Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét \(\Delta ACD\)và \(\Delta AEB\)có:
AE=AB (vì \(\Delta ACE\)đều)
\(\widehat{CAD}=\widehat{BAE}\left(=60^o+\widehat{BAC}\right)\)
AD=AB (vì \(\Delta ABD\)đều)
\(\Rightarrow\Delta ACD=\Delta AEB\left(c.g.c\right)\)
\(\Rightarrow CD=EB\)
2 dễ, tự làm.
a )
Vì ΔABDΔABD là tam giác đều(gt) ⇒DABˆ⇒DAB^=600
ΔACEΔACE là tam giác đều(gt) ⇒EACˆ⇒EAC^=600
⇒DABˆ+BACˆ=EACˆ+BACˆ⇒DAB^+BAC^=EAC^+BAC^
⇒DACˆ=BAEˆ⇒DAC^=BAE^
Xét ΔDACΔDAC và ΔBAEΔBAE có:
DA=BA(vì ΔABDΔABD là tam giác đều)
DACˆ=BAEˆDAC^=BAE^ (cmt)
AC=AE(vì ΔACEΔACE là tam giác đều)
⇒ΔDAC=ΔBAE(c.g.c)
b, Ta có: ^ AEM + ^MEC = 60 độ
mà ^AEM = ACD (Tam giác ABE = tam giác ADC)
=>^MEC + ^MCA = 60 độ
Ta lại có: ^ACE = 60 độ
=>^MCA + ^ACE+ ^MEC = 120 độ
mà ^MCA + ^ACE = ^MCE
=> ^MCE + ^MEC = 120 độ
Ta lại có: ^EMC + ^MCE + ^CEM = 180 độ
mà ^MCE + ^CEM =120 độ (cm trên)
=>^EMC + 120 độ =180 độ
=> ^EMC = 180 độ - 120 độ =60 độ
Ta lại có: ^BMC + ^EMC = 180 độ
mà ^EMC = 60 độ
=> ^BMC + 60 độ =180 độ
=> ^BMC = 180 độ - 60 độ = 120 độ (đpcm)
a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE
Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều )
^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE
CA = AE ( \(\Delta\)CAE đều )
Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)
=> ^ABE = ^ADC (2)
+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )
^KDA = ^KBI( theo ( 2) )
mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)
=> ^KIB = ^KAD = ^BAD= 60\(^o\)
=> ^DIB = 60\(^o\)
b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE
=> DM = BN (3)
+) Xét \(\Delta\)BAN và \(\Delta\)DAM
có: BN = DM ( theo (3)
^ABN = ^ADM ( theo (2)
AB = AD ( \(\Delta\)ADB đều )
=> \(\Delta\)BAN = \(\Delta\)DAM (4)
=> AN = AM => \(\Delta\)AMN cân tại A (5)
+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM
=> ^MAN = ^DAB = 60\(^o\)(6)
Từ (5); (6) => \(\Delta\)AMN đều
c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I
mà ^BIF = ^BID = 60\(^{\text{}o}\)( theo (a))
=> \(\Delta\)FIB đều (7)
=> ^DBA = ^FBI( =60\(^o\))
=> ^DBF + ^FBA = ^FBA + ^ABI
=> ^DBF = ^ABI
Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )
Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB => ^AIB = ^DFB = 180\(\text{}^o\)- ^BFI = 180\(\text{}^o\)-60\(\text{}^o\)=120\(\text{}^o\)
+) Mặt khác ^BID = 60 \(\text{}^o\)( theo (a) )
=> ^DIE = 180\(\text{}^o\)- ^BID = 120 \(\text{}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{}^o\)-60\(\text{}^o\)=60\(\text{}^o\)
=> ^AIE = ^DIE - ^DIA = 120\(\text{}^o\)-60\(\text{}^o\)=60\(\text{}^o\)
=> ^DIA = ^AIE ( = 60\(\text{}^o\))
=> IA là phân giác ^DIE.