K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Mình nhác vẽ hình nên bạn tự vẽ rồi tham khảo nha ^^

a, AM là trung tuyến => MA= MB=MC => MAC cân tại M có ME vuông góc AC => ME là đường cao cũng là đường phân giác 

=> góc AME = góc CME

Xét tam giác AME và CME có : ME chung; MA= MC, AME = CME =>tam giác AME = tam giác CME => MAE = MCE = 90 độ => MC vuông góc với CE hay BC vuông góc với CE (1)

AM là trung tuyến => MA= MB=MC => MBA cân tại M có MD vuông góc AB => MD là đường cao cũng là đường phân giác 

=> góc BMD = góc AMD

Xét tam giác BMD và AMD có : MD chung; MA= MB, BMD = AMD =>tam giác BMD= tam giác AMD => MAD = MBD = 90 độ => MB vuông góc với BD hay BC  vuông góc với BD (2) 

Từ (1)(2) => BD // CE ( cùng vuông góc với BC )

b, theo câu a tam giác AME = tam giác CME => AE = EC, tam giác BMD= tam giác AMD => DA = DB

Mà DE = DA + AE => DE = EC + DB

2 tháng 10 2018

A B C M K I E D H

MK nêu cách giải thôi nha! Lười quá!!!

a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)

Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.

Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE

\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng

b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)

Ta có

Vì  \(IA=IM\) và \(IK//AH\)

\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)

\(\Rightarrow IK=\dfrac{AH}{2}\) (1)

Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)

\(\Rightarrow AH^2=AC^2-HC^2\)

             \(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)

             \(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)

\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2) 

Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)

Vì AC không đổi nên \(IK\) ko đổi.

Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC

và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)

7 tháng 12 2021

a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.

Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).

Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.

Mà MD là đường cao (MD \(\perp\) AB).

=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).

Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.

Mà ME là đường cao (ME \(\perp\) AC).

=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).

Xét tam giác MBD và tam giác MAD có:

+ MD chung.

+ MB = AM (cmt).

+ ^BMD = ^AMD (MD là phân giác ^AMB).

=> Tam giác MBD = Tam giác MAD (c - g - c).

=> ^MBD = ^MAD (2 góc tương ứng). 

=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)

Xét tam giác MAE và tam giác MCE có:

+ ME chung.

+ MC = AM (cmt).

+ ^AME = ^CME (ME là phân giác ^AMC).

=> Tam giác MAE = Tam giác MCE (c - g - c).

=> ^MAE = ^MCE (2 góc tương ứng). 

=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)

Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).

b) Ta có: DE = DA + AE.

Mà DA = DB (Tam giác MBD = Tam giác MAD).

      EA = EC (Tam giác MAE = Tam giác MCE).

=> DE = BD + CE (đpcm).

 
9 tháng 8 2015

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt AC tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB \(\Rightarrow\) BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB \(\Rightarrow\) tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok

1 tháng 4 2018

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt A C tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB  ⇒ BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB ⇒ tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok