Cho ∆ABC cân (AB=AC). Vẽ các đường cao BE và CF.
a. Chứng minh BF=CE
b. Chứng minh EF//BC
c. Cho biết BC=6cm; AB=AC=9cm. Tính độ dài EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác DAC và tam giác EBC ta có:
\(\widehat{BEC}=\widehat{ADC}=90^0\)
C chung
tam giác DAC đồng dạng tam giác EBC
b, AD là đường cao vừa là đường phân giác
BD = DC
DC = \(\dfrac{BC}{2}\) =\(\dfrac{6}{3}=2\)
Vì tam giác DAC đồng dạng tam giác EBC suy ra \(\dfrac{AC}{BC}=\dfrac{DC}{EC}\Leftrightarrow EC=\dfrac{DC.BC}{AC}=\dfrac{3.6}{9}=2\)
c, vì đường cao BE,CF nên \(\widehat{BEC}=\widehat{CFB}=90^o\)
Xét tam giác BEC và tam giác CFB có
BC chung
\(\widehat{CBA}=\widehat{BCA}\)
tam giác BEC = tam giác CFB ( cạnh huyền góc nhọn )
CE = BF ( đpcm )
Ta có : AB = AC , CE = BF
AB = BF + AF ; AC = CE + AE
suy ra AF = AE => tam giác AEF cân tại A
\(\widehat{ÀEF}=\dfrac{180^o-\widehat{A}}{2}\) ( 1 )
tam giác ABC cân tại A suy ra \(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) ( 2 )
TỪ ( 1 ) và ( 2 ) ta có \(\widehat{AEF}=\widehat{ACB}\)
suy ra EF//BC ( có cặp góc đồng vị bằng nhau )
a) Xét ΔDAC vuông tại D và ΔEBC vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔDAC∼ΔEBC(g-g)
a, xet \(\Delta BFC\) vuong tai F va \(\Delta CEB\) vuong tai E
BC chung; \(\widehat{FBC}=\widehat{ECB}\left(\Delta ABCcan\right)\)
\(\Rightarrow\Delta BFC=\Delta CEB\left(ch-gn\right)\)
\(\Rightarrow BF=CE\)
b, Ta co: AF= AB- BF va AE= AC- EC
ma AB=AC (ABC can); BF=EC(cmt)
\(\Rightarrow AF=AE\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\)
=> EF//BC(d/li Talet dao)
c, ke duong cao AD, vi tg ABC can tai A nen AD vua la duong cao vua la duong trung truc
\(BD=DC=\dfrac{1}{2}BC=3cm\)
xet \(\Delta BEC\) va \(\Delta ADC\)
\(\widehat{C}chung;\widehat{ADC}=\widehat{BEC}=90\)
\(\Rightarrow\Delta BEC\infty\Delta ADC\Rightarrow\dfrac{AC}{BC}=\dfrac{DC}{EC}\)
\(\Rightarrow EC=\dfrac{BC.DC}{AC}=2cm\)
Ta co: AF=AE= AC-EC = 7cm
xet \(\Delta AFE\) va \(\Delta ABC\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC};\widehat{A}chung\)
\(\Rightarrow\Delta AFE\infty\Delta ABC\Rightarrow\dfrac{AF}{AB}=\dfrac{EF}{BC}\)
\(\Rightarrow EF=\dfrac{AF.BC}{AB}=\dfrac{14}{3}\approx4,67cm\)
a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
DO đó: ΔFBC=ΔECB
Suy ra: FB=EC
b: Ta có: AF+FB=AB
AE+EC=AC
mà BF=CE
và AB=AC
nên AF=AE
Xét ΔABC có AF/AB=AE/AC
nên FE//BC
GT | △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm BF và BC tỉ lệ 3 và 5 BE ∩ CF = {O} . Nối AO với EF |
KL | a, △ABC cân b, BC = ? c, AO là trung trực EF |
Bài làm:
a, Xét △BFC vuông tại F và △CEB vuông tại E
Có: BC là cạnh chung
CF = BE (gt)
=> △BFC = △CEB (ch-cgv)
=> FBC = ECB (2 góc tương ứng)
Xét △ABC có: ABC = ACB (cmt)
=> △ABC cân tại A
b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)
Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)
Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)
\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)
\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)
\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)
c, Vì △ABC cân tại A => AB = AC
Ta có: AB = AF + FB
BC = AE + EC
Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)
=> AF = AE
=> A thuộc đường trung trực của FE (1)
Ta có: DBC = FBE + EBC
ECB = ECF + FCB
Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)
=> FBE = ECF
Xét △BFO vuông tại F và △CEO vuông tại E
Có: FBO = ECO (cmt)
BF = CE (△BFC = △CEB)
=> △BFO = △CEO (cgv-gnk)
=> FO = OE (2 cạnh tương ứng)
=> O thuộc đường trung trực của FE (2)
Từ (1) và (2) => đường thẳng AO là trung trực của EF.
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó:ΔHAB\(\sim\)ΔHCA
a: Xét ΔBFC vuông tại F và ΔCEB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)
Do đó: ΔBFC=ΔCEB
Suy ra: BF=CE
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC