Tìm x,y,z biết x,y,z tỷ lệ với 3; 7; 2 và 2x2 + y2 + 3z2 = 316
hộ mik cái nhé (cấm xem chùa dưới mọi hình thức) thank
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do y tỉ lệ thuận x
y=k1 .x 1
do x tỉ lệ thuận z
x=k2 .z 2
1,2 suy ra
y=k1.k2 .z
hệ số tỉ lệ là k1.k2
Ta có: \(\dfrac{x}{3}\) = \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{5}\) = \(\dfrac{x}{3}\) = \(\dfrac{y-x}{5-3}\) = \(\dfrac{0,18}{2}\) = 0,09
⇒ \(y\) = 0,09 \(\times\) 5 = 0,45
\(x\) = 0,09 \(\times\) 3 = 0,27
\(z\) = 0,09 \(\times\) 7 = 0,63
Kết luận: \(x\) =0,27; \(y\) = 0,45; \(z\) = 0,63
dạng này của lớp 7 mà bro
\(x:y:z=3:5:4\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{3+5+4}=\frac{96}{12}=8\)
=> x = 24 ; y = 40 ; z = 32
Theo Đề Ra Ta Có :
x , y , z > 0
Và x + y + z = 180
\(\frac{x}{7}\)= \(\frac{y}{3}\)=\(\frac{z}{8}\)
Áp Dụng T/C dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}+\frac{y}{3}+\frac{z}{8}=\frac{180}{18}\)
\(\frac{x}{7}=\frac{180}{18}\Rightarrow x=70\)
\(\frac{y}{3}=\frac{180}{18}\Rightarrow y=30\)
\(\frac{z}{8}=\frac{180}{18}\Rightarrow z=80\)
MÌnh Nghĩ Là Có Thể Có Error
#)Giải :
Bài 1 :
a) Ta có :
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)
Vậy x = 14; y = 20; z = 32
x, y, z tỉ lệ với 3, 7, 2
=> \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)
2x2 + y2 + 3z2 = 316
<=> 2.(3k)2 + (7k)2 + 3.(2k)2 = 316
<=> 2.9k2 + 49k2 + 3.4k2 = 316
<=> 18k2 + 49k2 + 12k2 = 316
<=> 79k2 = 316
<=> k2 = 4
<=> k = ±2
Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=7\cdot2=14\\z=2\cdot2=4\end{cases}}\)
Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=7\cdot\left(-2\right)=-14\\z=2\cdot\left(-2\right)=-4\end{cases}}\)
Vậy ( x ; y ; z ) = { 6 ; 14 ; 4 ) , ( -6 ; -14 ; -4 ) }
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Đặt \(\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)Ta có : \(2x^2+y^2+3z^2=316\)
\(2.\left(3k\right)^2+\left(7k\right)^2+3.\left(2z\right)^2=316\)
\(\Leftrightarrow18k^2+49k^2+12k^2=316\Leftrightarrow49k^2=316\Leftrightarrow k=\pm2\)
Tự thay nhé