Giải các phương trình:
a) (3x2 - 5x + 1)(x2 - 4) = 0; b) (2x2 + x - 4)2 - (2x - 1)2 = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 + 2x - 1 = 0
=> 3x2 + 3x - x - 1 = 0
=> 3x(x + 1) - (x + 1) = 0
=> (3x - 1)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
x2 - 5x + 6 = 0
=> x2 - 2x - 3x + 6 = 0
=> x(x - 2) - 3(x - 2) = 0
=> (x - 3)(x - 2) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=> \(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
1, \(3x^2+2x-1=0\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
2, \(x^2-5x+6=0\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)
3, \(3x^2+7x+2=0\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}}\)
a) (x – 1)(x2 + x + 1) – 2x = x(x – 1)(x + 1)
⇔ x3 – 1 – 2x = x(x2 – 1)
⇔ x2 – 1 – 2x = x3 – x
⇔ -2x + x = 1 ⇔ - x = 1 ⇔ x = -1
Tập nghiệm của phương trình: S = { -1}
b) x2 – 3x – 4 = 0
⇔ x2 – 4x + x – 4 = 0 ⇔ x(x – 4) + (x – 4) = 0
⇔ (x – 4)(x + 1) = 0 ⇔ x – 4 = 0 hoặc x + 1 = 0
⇔ x = 4 hoặc x = -1
Tập nghiệm của phương trình: S = {4; -1}
c) ĐKXĐ : x – 1 ≠ 0 và x2 + x + 1 ≠ 0 (khi đó : x3 – 1 = (x – 1)(x2 + x + 1) ≠ 0)
⇔ x ≠ 1
Quy đồng mẫu thức hai vế:
Khử mẫu, ta được: 2x2 + 2x + 2 – 3x2 = x2 – x
⇔ -2x2 + 3x + 2 = 0 ⇔ 2x2 – 3x – 2 = 0
⇔ 2x2 – 4x + x – 2 = 0 ⇔ 2x(x – 2) + (x – 2) = 0
⇔ (x – 2)(2x + 1) = 0 ⇔ x – 2 = 0 hoặc 2x + 1 = 0
⇔ x = 2 hoặc x = -1/2(thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = {2 ; -1/2}
d) ĐKXĐ : x – 5 ≠ 0 và x – 1 ≠ 0 (khi đó : x2 – 6x + 5 = (x – 5)(x – 1) ≠ 0)
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x – 1 – 3 = 5x – 25 ⇔ -4x = -21
⇔ x = 21/4 (thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = {21/4}
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)
a) 3 x 2 + 5x - 1 = 0
Ta có: a = 3; b = 5; c = -1
Δ = b 2 - 4ac = 5 2 - 4.3.(-1) = 37 > 0
Phương trình có 2 nghiệm phân biệt:
Vậy phương trình đã cho có tập nghiệm
(3x2 – 5x + 1)(x2 – 4) = 0
⇔ 3x2 – 5x + 1 = 0 (1)
hoặc x2 – 4 = 0 (2)
+ Giải (1): 3x2 – 5x + 1 = 0
Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0
Phương trình có hai nghiệm:
+ Giải (2): x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = 2 hoặc x = -2.
Vậy phương trình có tập nghiệm
a) x 2 – 4 = 0: đây là phương trình bậc hai; a = 1; b = 0; c = - 4
b) x 3 + 4 x 2 – 2 = 0 : đây không là phương trình bậc hai
c) 2 x 2 + 5 x = 0 : đây là phương trình bậc hai; a = 2; b = 5; c = - 5
d) 4x – 5 = 0 đây không là phương trình bậc hai
e) - 3 x 2 = 0 đây là phương trình bậc hai; a = -3; b = 0; c = 0
3x2-5x-6=0
(a=3 ; b = -5 ; c=-6)
Vì a=3 trái dấu với c=-6 nên phương trình co1v 2 nghiệm phân biệt
S= x1+x2=\(\dfrac{-b}{a}\)=\(\dfrac{-\left(-5\right)}{3}\)=\(\dfrac{5}{3}\)
P= x1*x2=\(\dfrac{c}{a}\)=\(\dfrac{-6}{3}\)=-2
A=\(\dfrac{x_1}{x_2}\)-\(\dfrac{2}{x_1^2}\)
A=\(\dfrac{x_1^3\cdot x_2}{x_1^2\cdot x_2^2}-\dfrac{x_2^2+2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x_1^3\cdot x_2-x_2^2-2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x^2_1-x^2_2-2}{x_1\cdot x_2}\)
A=\(\dfrac{\left(x_1+x_2\right)\cdot\left(x_1-x_2\right)-2}{x_1\cdot x_2}\)
A=\(\dfrac{S\cdot\sqrt{S2-4P}-2}{P}\)
(Giải thích thêm x1-x2 = \(\sqrt{S^2-4P}\) vì (x1-x2)^2=x1^2 - 2x1x2 + x2^2=(x1^2+x2^2) -2x1x2 = (S^2-2P)*2P=S^2-4P)
( Công thức x1^2+x2^2 = x1^2 + 2x1x2 + x2^2 -2x1x2 = (x1+x2)^2 - 2x1x2 = S^2 -2P)
Thế vào ta có :
A=\(\dfrac{\dfrac{5}{3}\cdot\sqrt{\left(\dfrac{5}{3}\right)^2-4\cdot\left(-2\right)}-2}{-2}\)
A= \(\dfrac{19-5\sqrt{97}}{18}\)
Vậy giá trị của biểu thức A=\(\dfrac{19-5\sqrt{97}}{18}\)
( chỗ tui không cần kết luận mà bài chỗ bác đẹp y như chỗ tui vậy )
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
Nhớ like nha
please