K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5



4 tháng 4 2017

a) (3x2 – 5x + 1)(x2 – 4) = 0

=> 3x2 – 5x + 1 = 0 => x =

hoặc x2 – 4 = 0 => x = ±2.

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0

⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0

=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0

X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5

Nhớ like nha

please

5 tháng 7 2019

3x2 + 2x - 1 = 0

=> 3x2 + 3x - x - 1 = 0

=> 3x(x + 1) - (x + 1) = 0

=> (3x - 1)(x + 1) = 0

=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)

x2 - 5x + 6 = 0

=> x2 - 2x - 3x + 6 = 0

=> x(x - 2) - 3(x - 2) = 0

=> (x - 3)(x - 2) = 0

=> \(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

3x2 + 7x + 2 = 0

=> 3x2 + 6x + x  + 2 = 0

=> 3x(x + 2) + (x + 2) = 0

=> (3x + 1)(x + 2) = 0

=> \(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

1, \(3x^2+2x-1=0\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)

2, \(x^2-5x+6=0\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

3, \(3x^2+7x+2=0\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}}\)

28 tháng 1 2019

13 tháng 3 2019

a) (x – 1)(x2 + x + 1) – 2x = x(x – 1)(x + 1)

⇔ x3 – 1 – 2x = x(x2 – 1)

⇔ x2 – 1 – 2x = x3 – x

⇔ -2x + x = 1 ⇔ - x = 1 ⇔ x = -1

Tập nghiệm của phương trình: S = { -1}

b) x2 – 3x – 4 = 0

⇔ x2 – 4x + x – 4 = 0 ⇔ x(x – 4) + (x – 4) = 0

⇔ (x – 4)(x + 1) = 0 ⇔ x – 4 = 0 hoặc x + 1 = 0

⇔ x = 4 hoặc x = -1

Tập nghiệm của phương trình: S = {4; -1}

c) ĐKXĐ : x – 1 ≠ 0 và x2 + x + 1 ≠ 0 (khi đó : x3 – 1 = (x – 1)(x2 + x + 1) ≠ 0)

⇔ x ≠ 1

Quy đồng mẫu thức hai vế:

Khử mẫu, ta được: 2x2 + 2x + 2 – 3x2 = x2 – x

⇔ -2x2 + 3x + 2 = 0 ⇔ 2x2 – 3x – 2 = 0

⇔ 2x2 – 4x + x – 2 = 0 ⇔ 2x(x – 2) + (x – 2) = 0

⇔ (x – 2)(2x + 1) = 0 ⇔ x – 2 = 0 hoặc 2x + 1 = 0

⇔ x = 2 hoặc x = -1/2(thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {2 ; -1/2}

d) ĐKXĐ : x – 5 ≠ 0 và x – 1 ≠ 0 (khi đó : x2 – 6x + 5 = (x – 5)(x – 1) ≠ 0)

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x – 1 – 3 = 5x – 25 ⇔ -4x = -21

⇔ x = 21/4 (thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {21/4}

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)

30 tháng 12 2018

a) 3 x 2  + 5x - 1 = 0

Ta có: a = 3; b = 5; c = -1

Δ = b 2  - 4ac = 5 2 - 4.3.(-1) = 37 > 0

Phương trình có 2 nghiệm phân biệt:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy phương trình đã cho có tập nghiệm Đề kiểm tra Toán 9 | Đề thi Toán 9

22 tháng 8 2019

(3x2 – 5x + 1)(x2 – 4) = 0

⇔ 3x2 – 5x + 1 = 0 (1)

hoặc x2 – 4 = 0 (2)

+ Giải (1): 3x2 – 5x + 1 = 0

Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0

Phương trình có hai nghiệm: Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2): x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = 2 hoặc x = -2.

Vậy phương trình có tập nghiệm Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

6 tháng 4 2017

a) x 2   –   4  = 0: đây là phương trình bậc hai; a = 1; b = 0; c = - 4

b) x 3   +   4 x 2   –   2   =   0 : đây không là phương trình bậc hai

c) 2 x 2   +   5 x   =   0 : đây là phương trình bậc hai; a = 2; b = 5; c = - 5

d) 4x – 5 = 0 đây không là phương trình bậc hai

e) - 3 x 2  = 0 đây là phương trình bậc hai; a = -3; b = 0; c = 0

9 tháng 4 2022

what ? me

 

9 tháng 4 2022

3x2-5x-6=0

(a=3 ; b = -5 ; c=-6)

Vì a=3 trái dấu với c=-6 nên phương trình co1v 2 nghiệm phân biệt

S= x1+x2=\(\dfrac{-b}{a}\)=\(\dfrac{-\left(-5\right)}{3}\)=\(\dfrac{5}{3}\)

P= x1*x2=\(\dfrac{c}{a}\)=\(\dfrac{-6}{3}\)=-2

A=\(\dfrac{x_1}{x_2}\)-\(\dfrac{2}{x_1^2}\)

A=\(\dfrac{x_1^3\cdot x_2}{x_1^2\cdot x_2^2}-\dfrac{x_2^2+2}{x_1^2\cdot x_2^2}\)

A=\(\dfrac{x_1^3\cdot x_2-x_2^2-2}{x_1^2\cdot x_2^2}\)

A=\(\dfrac{x^2_1-x^2_2-2}{x_1\cdot x_2}\)

A=\(\dfrac{\left(x_1+x_2\right)\cdot\left(x_1-x_2\right)-2}{x_1\cdot x_2}\)

A=\(\dfrac{S\cdot\sqrt{S2-4P}-2}{P}\)

(Giải thích thêm x1-x2 = \(\sqrt{S^2-4P}\) vì (x1-x2)^2=x1^2 - 2x1x2 + x2^2=(x1^2+x2^2) -2x1x2 = (S^2-2P)*2P=S^2-4P)

( Công thức x1^2+x2^2 = x1^2 + 2x1x2 + x2^2 -2x1x2 = (x1+x2)^2 - 2x1x2 = S^2 -2P)

Thế vào ta có :

A=\(\dfrac{\dfrac{5}{3}\cdot\sqrt{\left(\dfrac{5}{3}\right)^2-4\cdot\left(-2\right)}-2}{-2}\)

A= \(\dfrac{19-5\sqrt{97}}{18}\)

Vậy giá trị của biểu thức A=\(\dfrac{19-5\sqrt{97}}{18}\)

( chỗ tui không cần kết luận mà bài chỗ bác đẹp y như chỗ tui vậy )

Câu 1. Phương trình nào sau đây là phương trình bậc nhất một ẩn?A.  3x2 + 2x = 0       B.  5x - 2y = 0                 C.  x + 1 = 0                 D.  x2 = 0Câu 2.   x = 1 là nghiệm của phương trình nào trong các phương trình dưới đây?A.  2x - 3 = x + 2      B.  x - 4 = 2x + 2              C.  3x + 2 = 4 - x            D.  5x - 2 = 2x + 1Câu 3. Phương trình vô nghiệm có...
Đọc tiếp

Câu 1. Phương trình nào sau đây là phương trình bậc nhất một ẩn?

A.  3x2 + 2x = 0       B.  5x - 2y = 0                 C.  x + 1 = 0                 D.  x2 = 0

Câu 2.   x = 1 là nghiệm của phương trình nào trong các phương trình dưới đây?

A.  2x - 3 = x + 2      B.  x - 4 = 2x + 2              C.  3x + 2 = 4 - x            D.  5x - 2 = 2x + 1

Câu 3. Phương trình vô nghiệm có tập nghiệm là?

A.  S = f                  B.  S = 0                           C.  S = {0}                    D.  S = {f}

Câu 4. Điều kiện xác định của phương trình   là?

A.  x ≠ 2 và      B.  x ≠ -2 và             C.  x ≠ -2 và x ≠ 3          D.  x ≠ 2 và

Câu 5. Cho AB = 3cm, CD = 40cm. Tỉ số của hai đoạn thẳng AB và CD bằng?

A.                         B.                                  C.                               D. 

Câu 6. Trong hình 1, biết , theo tính chất đường phân giác của tam giác thì tỉ lệ thức nào sau đây là đúng?

A.           B.    

C.           D.                                                                 (Hình 1)    

Câu 7 . Trong hình 2, biết EF // BC.   theo định lí Ta - lét thì tỉ lệ thức nào sau đây là đúng?

A.                B.                        

 

C.                 D. 

Câu 8. Biết    và CD =10cm. Vậy độ dài đoạn thẳng AB là?

A.  4cm                    B.  50cm                          C.  25cm                       D.  20cm   

Câu 9. Cho đồng dạng với  theo tỷ số đồng dạng k = , chu vi  bằng 60cm, chu vi  bằng:                                               

             A. 30cm                B.90cm                  C.60cm                  D.40cm               

Câu 10. Cho đồng dạng với  theo tỷ số đồng dạng k, đồng dạng với  theo tỷ số đồng dạng m. đồng dạng với  theo tỷ số đồng dạng

A. k.m                     B.                   C.                    D.

2
17 tháng 3 2022

zài qué

17 tháng 3 2022

zới cẻ lỗi nhìu