cho a,b,c \(\ge\)0 và \(4a+2b=9\); \(a+2c=4\)
timg giá trị nhỏ nhất của biểu thức: \(M=\left(a+b-c\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy-Schwarz:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c
\(\left\{{}\begin{matrix}a,b,c\ge0\\4a+2b=9\\a+2c=4\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)\(\left(2\right)-\left(3\right)\Leftrightarrow3a+2b-2c=5\)
\(\Leftrightarrow2\left(a+b-c\right)=5-a\)
\(M=\left(\dfrac{5-a}{2}\right)^2\) \(\left\{{}\begin{matrix}\left(2\right)=>a\le\dfrac{9}{4}\\\left(3\right)=>a\le4\end{matrix}\right.\) \(\Rightarrow0\le a\le\dfrac{9}{4}\)
<=> \(0\ge-a\ge\dfrac{-9}{4}\) \(\Leftrightarrow5\ge5-a\ge\dfrac{11}{4}\Leftrightarrow\dfrac{5}{2}\ge\dfrac{5-a}{2}\ge\dfrac{11}{8}\)
\(MinM=\dfrac{121}{64}\) khi a =9/4; b=0; c=7/8
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
Bài 1)
Đưa về đồng bậc:
\(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\Rightarrow-9\left(4x^3-y^3\right)=\left(x+2y\right)\left(52x^2-82xy+21y^2\right)\)
\(\Leftrightarrow 8x^3+2x^2y-13xy^2+3y^3=0\)
\(\Leftrightarrow (4x-y)(x-y)(2x+3y)\Rightarrow \) \(\left[{}\begin{matrix}x=y\\4x=y\\2x=-3y\end{matrix}\right.\)
Thay từng TH vào hệ phương trình ban đầu ta thấy chỉ TH \(x=y\) thỏa mãn.
\(\Leftrightarrow (x,y)=(1,1),(-1,-1)\)là nghiệm của HPT
Bài 2)
Đặt \(P=a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\Rightarrow 4P=4a+4b+4c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(\Leftrightarrow 4P=(a+2b+3c)+\left(3a+\frac{3}{a}\right)+\left(2b+\frac{9}{2b}\right)+\left(c+\frac{4}{c}\right)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{{}\begin{matrix}3a+\dfrac{3}{a}\ge6\\2b+\dfrac{9}{2b}\ge6\\c+\dfrac{4}{c}\ge4\end{matrix}\right.\)\(\Rightarrow 4P\geq (a+2b+3c)+6+6+4\geq 10+6+6+4=26\)
\(\Leftrightarrow P\geq \frac{13}{2}\) (đpcm)
Dấu bằng xảy ra khi \((a,b,c)=(1,\frac{3}{2},2)\)
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh