K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

a) \(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)

\(\Leftrightarrow\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)

\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)

\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)

\(\Leftrightarrow x=123\)

c) \(x^4-10.2^x+16=0\)

\(\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)

Ta có: 

\(2^x=t\)

\(\Rightarrow t^2-10t+16=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Bài 1: 

a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)

\(\Leftrightarrow6-8x-10+2x-5=0\)

\(\Leftrightarrow-6x+11=0\)

\(\Leftrightarrow-6x=-11\)

hay \(x=\dfrac{11}{6}\)

b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)

\(\Leftrightarrow6-12x-11+3x-1=0\)

\(\Leftrightarrow-9x-6=0\)

\(\Leftrightarrow-9x=6\)

hay \(x=-\dfrac{2}{3}\)

8 tháng 2 2020

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

8 tháng 2 2020

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3

a: Khi m=2 thì pt sẽ là x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

 

4 tháng 4 2023

\(a,\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=6\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=5\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\2x-3.1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

b, \(x^2-7x+10=0\\ \Leftrightarrow x^2-5x-2x+10=0\\ \Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

4 tháng 4 2023

\(a,\)\(\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=9\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2.2-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;1\right)\)

\(b,x^2-7x+10=0\)

\(\Delta=b^2-4ac=\left(-7\right)^2-4.10=9>0\)

\(\Rightarrow\) Pt có 2 nghiệm \(x_1,x_2\)

Ta có :

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{7+3}{2}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{7-3}{2}=2\end{matrix}\right.\)

Vậy \(S=\left\{5;2\right\}\)

a: x^2-mx+m-1=0

Khi m=5 thì (1) sẽ là x^2-5x+4=0

=>x=1 hoặc x=4

b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2

Để phươg trình có 2 nghiệm phân biệt thì m-2<>0

=>m<>2

x2=2x1

x2+x1=m

=>3x1=m và x2=2x1

=>x1=m/3 và x2=2/3m

x1*x2=m-1

=>2/9m^2-m+1=0

=>2m^2-9m+9=0

=>2m^2-3m-6m+9=0

=>(2m-3)(m-3)=0

=>m=3 hoặc m=3/2

9 tháng 3 2017

a) Sai lầm là coi -2 là hạng từ và chuyển vế hạng tử này trong khi -2 là một nhân tử.

Lời giải đúng:

-2x > 23

⇔ x < 23 : (-2) (chia cho số âm nên đổi chiều)

⇔ x < -11,5

Vậy nghiệm của bất phương trình là x < -11,5

b) Sai lầm là nhân hai vế của bất phương trình với Giải bài 34 trang 49 SGK Toán 8 Tập 2 | Giải toán lớp 8 mà không đổi chiều bất phương trình.

Lời giải đúng:

Giải bài 34 trang 49 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy nghiệm của bất phương trình là x < -28

27 tháng 2 2017

 

 

1) Ta có: \(4x+8=3x-1\)

\(\Leftrightarrow4x-3x=-1-8\)

\(\Leftrightarrow x=-9\)

2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)

\(\Leftrightarrow10-5x-15-3x+3>0\)

\(\Leftrightarrow-8x>2\)

hay \(x< \dfrac{-1}{4}\)