Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)
\(\Leftrightarrow\frac{148-x}{25}-\frac{25}{25}+\frac{169-x}{23}-\frac{46}{23}+\frac{186-x}{21}-\frac{63}{21}+\frac{199-x}{19}-\frac{76}{19}=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right).\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\left(\text{vì }\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\)
<=>x=123
Vậy S={123}
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
17) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)
18) \(ĐKXĐ:x\ne1\)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)
\(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow x=-4\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)
20) \(ĐKXĐ:x\ne0\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
\(\Leftrightarrow x^4+x-x^4+x-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)
\(a)\frac{2x-1}{5x-10}\) \(\text{Đ}K:x\ne2\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}(TM)\)
\(b)\frac{x^2-x}{2x}\) \(\text{Đ}K:x\ne0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x.(x-1)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)
\(c)\frac{2x+3}{4x-5}\) \(\text{Đ}K:x\ne\frac{5}{4}\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=\frac{-3}{2}(TM)\)
\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\) \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)
\(\Leftrightarrow(x-1).(x+2)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)
gửi cho 4 câu trc
a) \(\left(x-5\right)^2+\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+x+5\right)=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
b) \(\frac{x-2}{4}+\frac{2x-3}{3}=\frac{x-18}{6}\)
\(\Rightarrow\frac{3x-6}{12}+\frac{8x-12}{12}=\frac{2x-36}{12}\)
\(\Rightarrow\frac{11x-18}{12}=\frac{2x-36}{12}\)
\(\Rightarrow11x-18=2x-36\)
\(\Rightarrow11x-2x=18-36\)
\(\Rightarrow9x=-18\Rightarrow x=-2\)
c) \(\frac{1}{x-3}+\frac{x-3}{x+3}=\frac{5x-6}{x^2-9}\)
\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)
\(\Rightarrow\frac{x+3}{\left(x+3\right)\left(x-3\right)}+\frac{x^2-6x+9}{\left(x+3\right)\left(x-3\right)}=\frac{5x-6}{x^2-9}\)
\(\Rightarrow\frac{x^2-5x+12}{x^2-9}=\frac{5x-6}{x^2-9}\)
\(\Rightarrow x^2-5x+12=5x-6\)
\(\Rightarrow x^2-10x+18=0\)
Giải biệt thức sẽ ra 2 nghiệm \(5+\sqrt{7}\)và \(5-\sqrt{7}\)
Gửi Cool: Lần sau đừng quên tìm điều kiện nhé. Câu c. ĐK: x khác 3 và x khác -3
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\left(10x+3\right):8=\left(7-8x\right):12\)
\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)
\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)
\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)
\(\frac{23}{12}x=\frac{5}{24}\)
\(x=\frac{5}{46}\)
E mới lớp 6 nên giải sai thì thông cảm ạ UwU
\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)
\(< =>\frac{x}{45}=\frac{32}{45}\)
\(< =>x=32\)
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)
\(< =>120x+36=56-64x\)
\(< =>184x=56-36=20\)
\(< =>x=\frac{20}{184}=\frac{5}{46}\)
a) \(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\Leftrightarrow\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
\(\Leftrightarrow x=123\)
c) \(x^4-10.2^x+16=0\)
\(\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Ta có:
\(2^x=t\)
\(\Rightarrow t^2-10t+16=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)