Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay m=1 vào pt, ta được:
\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16\)
\(=\left(m-4\right)^2\)
Để phươg trình có hai nghiệm phân biệt thì m-4<>0
hay m<>4
Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-m\right)^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
a. + Với m = − 1 2 phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .
+ Vậy khi m = − 1 2 phương trình có hai nghiệm x= 0 và x= 4.
b. + Phương trình có hai nghiệm dương phân biệt khi
Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0
+ Ta có Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R
+ Giải được điều kiện m > − 1 2 (*).
+ Do P>0 nên P đạt nhỏ nhất khi P 2 nhỏ nhất.
+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3 ( ∀ m > − 1 2 ) ⇒ P ≥ 3 ( ∀ m > − 1 2 ) .
và P = 3 khi m= 0 (thoả mãn (*)).
+ Vậy giá trị nhỏ nhất P = 3 khi m= 0.
a: khi m=1 thì pt sẽ là:
x^2-4x-5=0
=>x=5; x=-1
b: |x1|-|x2|=-2022
=>x1^2+x2^2-2|x1x2|=2022^2
=>(x1+x2)^2-2x1x2-2|x1x2|=2022^2
=>(2m+2)^2-2|-5|-2*(-5)=2022^2
=>(2m+2)^2=2022^2
=>2m+2=2022 hoặc 2m+2=-2022
=>m=1010 hoặc m=-1012
a: x^2-mx+m-1=0
Khi m=5 thì (1) sẽ là x^2-5x+4=0
=>x=1 hoặc x=4
b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2
Để phươg trình có 2 nghiệm phân biệt thì m-2<>0
=>m<>2
x2=2x1
x2+x1=m
=>3x1=m và x2=2x1
=>x1=m/3 và x2=2/3m
x1*x2=m-1
=>2/9m^2-m+1=0
=>2m^2-9m+9=0
=>2m^2-3m-6m+9=0
=>(2m-3)(m-3)=0
=>m=3 hoặc m=3/2