Cho các số hửu tỉ A<B<C<D. Chứng minh rằng nếuA<B, C<D thì A-D<B-C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình là fan nè :
Bạn muốn hiểu rõ hơn thì vào link này nhé : https://www.youtube.com/watch?feature=player_embedded&v=xl1ILze5ZpM
\(\left(x-3\right)\left(2x+6\right)=0\)
<=> \(\hept{\begin{cases}x-3=0\\2x+6=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=-3\end{cases}}\)
học tốt
a. (x - 3) . (2x + 6) = 0
<=> \(\orbr{\begin{cases}x-3=0\\2x+6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\2x=-6\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy x = + 3
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\frac{2^{40}}{2^{30}}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)
\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)
\(=\frac{2^{35}+2^{15}}{1+2^5}\)
\(\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{4}\right)^{20}\)
\(=\left(\frac{1}{2}\right)^{10}-\left[\left(\frac{1}{2}\right)^2\right]^{20}\)
\(=\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{2}\right)^{40}\)
\(=\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{2}\right)^{10}\cdot\left(\frac{1}{2}\right)^{30}\)
\(=\left(\frac{1}{2}\right)^{10}\cdot\left[1-\left(\frac{1}{2}\right)^{30}\right]\)
\(=\frac{1}{2^{10}}\cdot\frac{1-2^{30}}{2^{30}}\)
\(=\frac{1-2^{30}}{2^{40}}\)
a) \(\left(2x+3\right)^2=\frac{9}{21}\)
<=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\frac{4}{11}\\x=-1\frac{7}{11}\end{cases}}\)
Vậy...
Vì D > C , B > A
=> D - A > C - B
=> -1 ( D - A ) < ( C - B ) ( -1 )
=> A - D < B - C
Nhầm A,B,C,D mới đúng