![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chậc :))) T còn cách khác đây =)))
\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\)
\(\Leftrightarrow\left(\sqrt{x-1+2\sqrt{x-1}}\right)^2=\left(1+\sqrt{x-1-2\sqrt{x-2}}\right)^2\)
\(\Leftrightarrow x-1+2\sqrt{x-2}-x=2\sqrt{x-1-2\sqrt{x-2}}+x-2\sqrt{x-2}-x\)
\(\Leftrightarrow2\sqrt{x-2}-1=2\sqrt{x-1-2\sqrt{x-2}}-2\sqrt{x-2}\)
\(\Leftrightarrow4x-4\sqrt{x-2}-7=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}+8x-12\)
\(\Leftrightarrow5-4\sqrt{x-2}-4x=-8\sqrt{x-2}-8\sqrt{x-2}.\sqrt{x-2\sqrt{x-2}-1}\)
\(\Leftrightarrow x=\frac{9}{4}\) (tmyk)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+.......+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n}-1\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+........+\frac{\sqrt{n}-\sqrt{n-1}}{n-\left(n-1\right)}\)
\(=\sqrt{2}-\sqrt{1}+...........+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
bài B tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)
\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)
Đặt \(\sqrt{x}=a\left(a>=0\right)\)
Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)
\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)
\(=12+16\left(12+5\sqrt{3}\right)\)
\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)
\(\Leftrightarrow x=a^2\simeq5,66\)
c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)
\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)
\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)
d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)
\(\Leftrightarrow3x-4001=0\)
hay x=4001/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(VP=\left(3+\sqrt{6}\right)^2\)
\(=3^2+2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=9+6\sqrt{6}+6\)
\(=15+6\sqrt{6}\)≠VP
=> Sai đề rồi bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)
b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)
\(=x-4y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\left(Đk:x\ge1\right)\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=|\sqrt{x-1}-1|+|\sqrt{x-1}+1|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1=2\sqrt{x-1}\)(Ko chắc:v)
\(b,\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
`sqrt{2} = 1,414213...`
`sqrt{2} = 2/sqrt{2} `
\(\sqrt{2}=1,41421356...\)