Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2\sqrt{8}-3\sqrt{18}+\sqrt{32}\)
\(=4\sqrt{2}-6\sqrt{2}+4\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
\(=\sqrt{2}-1+\sqrt{2}+1\)
\(=2\sqrt{2}\)
c) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
=1
a: \(A=\sqrt{9-5-2\sqrt{3}}=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
b: Sửa đề: \(B=\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=2\)
\(A=\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{2+\sqrt{2}}}+\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{2-\sqrt{2}}}=\dfrac{\sqrt{2}\left(\sqrt{2}-\sqrt{2+\sqrt{2}}\right)}{2-2-\sqrt{2}}+\dfrac{\sqrt{2}\left(\sqrt{2}-\sqrt{2-\sqrt{2}}\right)}{2-2+\sqrt{2}}=-\sqrt{2}+\sqrt{2+\sqrt{2}}+\sqrt{2}-\sqrt{2-\sqrt{2}}=0=\sqrt{2+\sqrt{2}}-\sqrt{2-\sqrt{2}}\)
=> \(A^2=\left(\sqrt{2+\sqrt{2}}-\sqrt{2-\sqrt{2}}\right)^2=2+\sqrt{2}-2\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}+2-\sqrt{2}=4-2\sqrt{2}\)
\(\Rightarrow A=\sqrt{4-2\sqrt{2}}\)
`sqrt{2} = 1,414213...`
`sqrt{2} = 2/sqrt{2} `
\(\sqrt{2}=1,41421356...\)