Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(2x^2+5x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\) \(\left(a+b+c=1\right)\)
a: =(x-y)^2+2(x-y)
=(x-y)(x-y+2)
c: =(x-3)(x+3)+(x-3)^2
=(x-3)(x+3+x-3)
=2x(x-3)
d: =(x+3)(x^2-3x+9)-4x(x+3)
=(x+3)(x^2-7x+9)
e: =(x^2-8x+7)(x^2-8x+15)-20
=(x^2-8x)^2+22(x^2-8x)+85
=(x^2-8x+17)(x^2-8x+5)
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2
a,sửa đề : đk x khác -2; 2
\(x^2+x-2+5x-10=12+x^2-4\)
\(\Leftrightarrow6x-20=0\Leftrightarrow x=\dfrac{10}{3}\left(tm\right)\)
b, \(3x-12+5+5x=105\Leftrightarrow8x=112\Leftrightarrow x=14\)
c, \(3x^2+14x-49=-\left(x^2+2x-15\right)\)
\(\Leftrightarrow4x^2+16x-34=0\Leftrightarrow x=\dfrac{-4\pm5\sqrt{2}}{2}\)
a. ko hỉu đề lắm :v
b.\(\dfrac{x-4}{5}+\dfrac{1+x}{3}=7\)
\(\Leftrightarrow\dfrac{3\left(x-4\right)+5\left(1+x\right)}{15}=\dfrac{105}{15}\)
\(\Leftrightarrow3\left(x-4\right)+5\left(1+x\right)=105\)
\(\Leftrightarrow3x-12+5+5x-105=0\)
\(\Leftrightarrow8x-112=0\)
\(\Leftrightarrow8x=112\)
\(\Leftrightarrow x=14\)
c.\(\left(3x-7\right)\left(x+7\right)=\left(5+x\right)\left(3-x\right)\)
\(\Leftrightarrow3x^2+21x-7x-49=15-5x+3x-x^2\)
\(\Leftrightarrow4x^2+16x-64=0\)
Nghiệm xấu lắm bạn
Ta có : x2 - 2x - (x + 3)2 = 6
<=> x2 - 2x - x2 - 6x - 9 = 6
<=> -8x - 9 = 6
=> -8x = 15
=> x = \(\frac{15}{-8}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
\(\left(2x+1\right)^2+\left(x+3\right)^2=5\left(x+7\right)\left(x-7\right)\)
=>\(4x^2+4x+1+x^2+6x+9=5\left(x^2-49\right)\)
=>\(5x^2+10x+10-5x^2+245=0\)
=>10x+255=0
=>10x=-255
=>x=-25,5
Gieo con xúc xắc 6 nmặt.Tính xác suất biến cố.A:Số chấm xuất hiện là số nguyên tố.B:Số chấm xuất hiện khôing vượt qua 4