Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)
\(\Leftrightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}=\dfrac{3-n}{6}\)
\(\Leftrightarrow1.6=6=m\left(3-n\right)\)
Mà \(6=1.6=2.3=\left(-1\right).\left(-6\right)=\left(-2\right).\left(-3\right)\)
Ta có bảng sau:
\(m\) | \(1\) | \(-1\) | \(6\) | \(-6\) | \(2\) | \(-2\) | \(3\) | \(-3\) |
\(3-n\) | \(6\) | \(-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(2\) | \(-2\) |
\(n\) | \(-3\) | \(9\) | \(2\) | \(4\) | \(0\) | \(6\) | \(1\) | \(5\) |
Vậy...
Ta có \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{3-n}{6}\)
\(\Rightarrow1\times6=\left(3-n\right)\times m\)
\(\Rightarrow6=\left(3-n\right)\times m\)
\(\Rightarrow\left(3-n\right);m\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow\left(3-n\right)\times m=6=(-1)\times\left(-6\right)=(-6)\times\left(-1\right)=\left(-2\right)\times\left(-3\right)=\left(-3\right)\times\left(-2\right)=1\times6=6\times1=2\times3=3\times2\)
Ta có bảng sau
3-n | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
m | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
n | 9 | 6 | 5 | 4 | 2 | 1 | 0 | -3 |
Vậy các cặp m,n thỏa mãn là
m | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 9 | 6 | 5 | 4 | 2 | 1 | 0 | -3 |
Gọi tổng trên là A
1/2.2<1/1.2
1/3.3<1/2.3
........
1/n.n<1/(n-1).n
=>A< 1/1.2+1/2.3+.....+1/(n-1).n
=> A<1-1/2+1/2-1/3+....+1/(n-1)-1/n
=> A< 1-1/n<1
=>A<1
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
Bài 1 :
Sửa đề :
Tìm \(n\in Z\) để những phân số sau đồng thời có giá trị nguyên
\(\dfrac{-12n}{n};\dfrac{15}{n-2};\dfrac{8}{n+1}\)
Làm
Ta có :
\(\dfrac{-12n}{n}=-12\)
\(\Leftrightarrow\) Với mọi \(n\) thì \(\dfrac{-12n}{n}\) đều có giá trị nguyên \(\left(1\right)\)
Để \(\dfrac{15}{n-2}\in Z\) \(\Leftrightarrow n-2\inƯ\left(15\right)=\left\{\pm1;\pm15;\pm3;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{-13;\pm3;\pm1;5;7;17\right\}\left(1\right)\)
Để \(\dfrac{8}{n+1}\in Z\Leftrightarrow n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow n\in\left\{-9;-5;\pm3;-2;0;1;7\right\}\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow n\in\left\{\pm3;1;7\right\}\)
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
ko biết
=> (n - 4) ⋮ (n - 1)
Ta có: n - 4 = (n - 1) - 3
Vì (n - 1) ⋮ (n - 1) nên để (n - 1) - 3 ⋮ (n - 1) thì 3 ⋮ (n - 1)
=> n - 1 ϵ Ư(3) = {-3; -1; 1; 3}
TH1: n - 1 = -3
=> n = -2 (Thỏa mãn)
TH2: n - 1 = -1
=> n = 0 (Thỏa mãn)
TH3: n - 1 = 1
=> n = 2 (Thỏa mãn)
TH4: n - 1 = 3
=> n = 4 (Thỏa mãn)
Vậy n ϵ {-2; 0; 2; 4}