Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.................+\dfrac{2}{n\left(n+1\right)}=\dfrac{2003}{2004}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+............+\dfrac{2}{n\left(n+1\right)}=\dfrac{2003}{2004}\)
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+............+\dfrac{2}{2\left(n+1\right)}=\dfrac{2003}{2004}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2003}{2004}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2003}{2004}\)
\(\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2003}{4008}\)
\(\dfrac{1}{n+1}=\dfrac{1}{4008}\)
\(\Rightarrow n+1=4008\)
\(\Rightarrow n=4007\) (Thỏa mãn \(n\in N\))
Vậy \(n=4007\) là giá trị cần tìm
~~Chúc bn học tốt~~
a,\(\dfrac{x}{3}-\dfrac{1}{y}=\dfrac{1}{2}\)
=> \(\dfrac{1}{y}=\dfrac{x}{3}-\dfrac{1}{2}=>\dfrac{1}{y}=\dfrac{2x-3}{6}\)
=> y(2x-3)=6.1=6
=> y và 2x-3 là Ư (6)= {+-1,+-2,+-3,+-6}
2x-3 | -1 | 1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 2 | 2,5 | 1/2 | 3 | 0 | 9/2 | -3/2 |
y | -6 | 6 | 3 | -3 | 2 | -2 | 1 |
-1 |
vậy (x;y)= .......................
b,c làm tương tự
chúc bn học tốt
a: \(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{10}-\dfrac{3}{202}=\dfrac{150}{101}\)
b:
1. \(\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).0\)
\(=0\)
a) Để phân số \(\dfrac{3}{n-2}\) là số nguyên thì n - 2 \(⋮\) 3
\(\Rightarrow\) n - 2 \(\in\) Ư(3)
\(\Rightarrow\) n - 2 \(\in\){3; -3; 1;-1}
n \(\in\){5; -1; 3; 2}
c) \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{28.29}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{3}-\dfrac{1}{30}\)
\(=\dfrac{10}{30}-\dfrac{1}{30}\)
\(=\dfrac{9}{30}\)
=\(\dfrac{3}{10}\)
2)\(x+y+z=9^2=81\)
Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{x+y+z}{15+20+28}=\dfrac{81}{63}=\dfrac{9}{7}\)
\(\Rightarrow x=\dfrac{135}{7};y=\dfrac{180}{7};z=36\)
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
Giải:
Ta có: \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)
\(\Leftrightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}=\dfrac{3-n}{6}\)
\(\Leftrightarrow1.6=6=m\left(3-n\right)\)
Mà \(6=1.6=2.3=\left(-1\right).\left(-6\right)=\left(-2\right).\left(-3\right)\)
Ta có bảng sau:
Vậy...
Ta có \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}\)
\(\Rightarrow\dfrac{1}{m}=\dfrac{3-n}{6}\)
\(\Rightarrow1\times6=\left(3-n\right)\times m\)
\(\Rightarrow6=\left(3-n\right)\times m\)
\(\Rightarrow\left(3-n\right);m\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow\left(3-n\right)\times m=6=(-1)\times\left(-6\right)=(-6)\times\left(-1\right)=\left(-2\right)\times\left(-3\right)=\left(-3\right)\times\left(-2\right)=1\times6=6\times1=2\times3=3\times2\)
Ta có bảng sau
Vậy các cặp m,n thỏa mãn là