Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: B là số nguyên
=>n-3 thuộc {1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3:
a: -72/90=-4/5
b: 25*11/22*35
\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Mik làm Bài 2 nhé ~
Bài 2 :
a) \(x-\dfrac{1}{2}=-\dfrac{1}{10}\)
\(x=-\dfrac{1}{10}+\dfrac{1}{2}\)
\(x=\dfrac{2}{5}\)
b) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\)
\(\dfrac{2}{3}x=\dfrac{5}{2}+\dfrac{7}{6}\)
\(\dfrac{2}{3}x=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}:\dfrac{2}{3}\)
\(x=\dfrac{11}{3}.\dfrac{3}{2}\)
\(x=\dfrac{11}{2}\)
c) \(2,5-\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=2,5-\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{5}{2}-\dfrac{3}{4}\)
\(\dfrac{1}{8}x+\dfrac{1}{2}=\dfrac{7}{4}\)
\(\dfrac{1}{8}x=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\dfrac{1}{8}x=\dfrac{5}{4}\)
\(x=10\)
Bài 1:
a) \(\dfrac{-4}{11}.\dfrac{7}{9}+\dfrac{-4}{11}.\dfrac{2}{9}-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.1-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}-\dfrac{7}{11}\)
\(=-1\)
b) \(\dfrac{3}{5}:\dfrac{-7}{10}+0,5-\left(\dfrac{-9}{14}\right)\)
\(=\dfrac{-6}{7}+\dfrac{1}{2}+\dfrac{9}{14}\)
\(=\dfrac{2}{7}\)
c) \(\dfrac{3}{5}-\dfrac{8}{5}:\left(5,25+75\%\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:\left(\dfrac{21}{4}+\dfrac{3}{4}\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:6\)
\(=\dfrac{3}{5}-\dfrac{4}{15}\)
\(=\dfrac{1}{3}\)
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
-5/7; 43/1; 7:2a/10 là phân số