">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

VD5. Đặt a = x - y , b = y - z , c = z - x

=> a + b + c = 0

nên P = (x  - y)3 + (y - z)3 + (z - x)3 

= a3 + b3 + c3 

= (a + b)3 - 3ab(a + b) + c3 

= (-c)3 - 3ab(-c) + c3 

= 3abc = 3(x - y)(y - z)(z - x)

VD7 : Đặt x + y - z = a ; x - y + z = b ; -x + y + z = c

ta thấy : a + b + c = x + y + z 

Nên ta được Q = (x + y + z)3 - (x + y - z)3 - (x - y + z)3 - (-x + y + z)3

= (a + b + c)3 - a3 - b3 - c3 

= (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3 - a3 - b3 - c3

= a3 + b3 + 3ab(a + b) + 3(a + b)c(a + b + c) + c3 - a3 - b3 - c3 

= 3(a + b)[ab + c.(a + b + c)] 

 = 3(a + b)(b + c)(c + a)

= 24xyz

Bài 6:

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=MB=MC

Xét hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

c: Ta có: AMCK là hình thoi

=>AK//CM và AK=CM

AK//CM

=>AK//MB

Ta có: AK=CM

CM=MB

Do đó; AK=MB

Xét tứ giác ABMK có

AK//MB

AK=MB

Do đó; ABMK là hình bình hành

d: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

Hình bình hành ABEC có AB=AC

nên ABEC là hình thoi

Bài 5:

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\hat{ADH}=\hat{CBK}\) (hai góc so le trong, AD//BC)

Do đó: ΔAHD=ΔCKB

b: ΔAHD=ΔCKB

=>HD=KB; AH=CK

ta có: AH⊥BD

CK⊥BD

Do đó:AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

c: Ta có: AH//CK

=>AM//CN

ta có: AB//CD
=>AN//CM

Xét tứ giác ANCM có

AN//CM

AM//CN

Do đó: ANCM là hình bình hành

d: Ta có; ANCM là hình bình hành

=>AC cắt NM tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,MN,BD đồng quy

Bài 2:

a: Ta có: \(AE=EB=\frac{AB}{2}\)

\(DF=FC=\frac{DC}{2}\)

mà AB=CD

nên AE=EB=DF=FC

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE//BF

=>FN//EM

Ta có: AECF là hình bình hành

=>AF//CE

=>FM//EN

Xét tứ giác MENF có

ME//NF

MF//NE

Do đó: MENF là hình bình hành

c: Ta có: MENF là hình bình hành

=>MN cắt EF tại trung điểm của mỗi đường(1)

Ta có: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường(2)

Từ (1),(2) suy ra AC,EF,MN đồng quy


26 tháng 7

26 tháng 7

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a:


b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)

Ta có: ABCD là hình thang

=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{BCD}<180^0-90^0=90^0\)

=>\(\hat{BCD}<\hat{BAD}\)

TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)

Ta có: ABCD là hình thang

DC//AB

=>\(\hat{CDA}+\hat{DAB}=180^0\)

=>\(\hat{DAB}<180^0-90^0=90^0\)

=>\(\hat{DAB}<\hat{DCB}\)

c: Xét tứ giác ABCD có

AB//CD
AB=CD

Do đó: ABCD là hình bình hành

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

Ta có: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x^2+2xy+y^2\right)+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\begin{cases}x+y=0\\ x-1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=-1\end{cases}\)

Khi x=1;y=-1 thì ta có:

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}\)

=1

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

a:


b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)

Ta có: ABCD là hình thang

=>\(\hat{ABC}+\hat{BCD}=180^0\)

=>\(\hat{BCD}<180^0-90^0=90^0\)

=>\(\hat{BCD}<\hat{BAD}\)

TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)

Ta có: ABCD là hình thang

DC//AB

=>\(\hat{CDA}+\hat{DAB}=180^0\)

=>\(\hat{DAB}<180^0-90^0=90^0\)

=>\(\hat{DAB}<\hat{DCB}\)

c: Xét tứ giác ABCD có

AB//CD
AB=CD

Do đó: ABCD là hình bình hành