K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

\(pt\Leftrightarrow3x^2-2\left(a+b\right)x+ab=0\)

\(\Delta'=\left(a+b\right)^2-3ab=a^2+b^2-ab=\frac{1}{2}\left[a^2+b^2+\left(a-b\right)^2\right]\ge0\)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

PT $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$

$\Leftrightarrow 3x^2-2x(a+b+c)+(ab+bc+ac)=0$

Ta thấy:

$\Delta'=(a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac$

$=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0$ với mọi $a,b,c\in\mathbb{R}$

Do đó PT luôn có nghiệm với mọi $a,b,c$ (đpcm)

11 tháng 4 2018

Bn học lớp 9 thì Bn giúp Mk Tl câu trên Bn đc k ?

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

NV
16 tháng 9 2019

Đề bài sai bạn

Cho \(a=c=1\) ; \(b=0\) thì pt trở thành:

\(x\left(x-1\right)+x^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow3x^2-3x+1=0\)

Phương trình này vô nghiệm

22 tháng 1 2017

Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)

Ta lại có

\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)

\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)

\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)

\(=\left(a-b\right)^2\ge0\)

\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm

Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm