Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)
Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)
\(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)
mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> Có ít nhất 1 trong 2 pt có nghiệm
=> đpcm
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)
Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)
\(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)
\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)
\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrowđpcm\)
Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)
Ta lại có
\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)
\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)
\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)
\(=\left(a-b\right)^2\ge0\)
\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm
Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm