\(x(x-a)+x(x-b)+(x-a)(x-c)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2019

Đề bài sai bạn

Cho \(a=c=1\) ; \(b=0\) thì pt trở thành:

\(x\left(x-1\right)+x^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow3x^2-3x+1=0\)

Phương trình này vô nghiệm

NV
28 tháng 9 2019

Khi pt có nghiệm \(x=\sqrt{2}-1\)

\(\Rightarrow\left(\sqrt{2}-1\right)^2+a\left(\sqrt{2}-1\right)+b=0\)

\(\Rightarrow3-2\sqrt{2}+a\sqrt{2}-a+b=0\)

\(\Rightarrow\left(a-2\right)\sqrt{2}=a-b-3\)

Do a; b hữu tỉ \(\Rightarrow VP\) hữu tỉ \(\Rightarrow VT\) hữu tỉ

\(\sqrt{2}\) vô tỉ nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a-2=0\\a-b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

28 tháng 9 2019

thanks nhe

:3

16 tháng 4 2019

c, Với x\(_1\) = 2x\(_2\) thì :

x\(_1\) + x\(_2\) = 2m \(\Leftrightarrow\) 2x\(_2\) + x\(_2\) = 2m \(\Leftrightarrow\) x\(_2\) = \(\frac{2m}{3}\) \(\Rightarrow\) x\(_1\) = 2x\(_2\) = \(\frac{4m}{3}\)

Mà x\(_1\)x\(_2\) = 2m - 1

\(\Leftrightarrow\) \(\frac{4m}{3}\) * \(\frac{2m}{3}\) = 2m - 1 \(\Leftrightarrow\) \(\frac{8m^2}{9}\) = 2m - 1 \(\Leftrightarrow\) 8m\(^2\) = 18m - 9 \(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 0 (2) \(\Delta\)' = 9\(^2\) - 8*9 = 9 > 0 Vì \(\Delta\)' > 0 nên phương trình (2) có 2 nghiệm phân biệt : m\(_3\) = \(\frac{9+\sqrt{9}}{8}\) = 3/2 m\(_4\) = \(\frac{9-\sqrt{9}}{8}\) = 3/4 Vậy khi m = 3/2 hoặc m = 3/4 thì phương trình ban đầu luôn có 2 nghiệm x\(_1\), x\(_2\) thỏa mãn : x\(_1\)=2x\(_2\)

16 tháng 4 2019

Phương trình : x\(^2\) - 2mx + 2m - 1 = 0 (*)

a, phương trình (*) có : \(\Delta\)' = (-m)\(^2\) - 1*(2m - 1 )

= m\(^2\) - 2m + 1

= (m-1)\(^2\) (luôn \(\ge\) 0 với mọi m)

Do đó phương trình (*) luôn có nghiệm với mọi m

b, Áp dụng hệ thức Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{matrix}\right.\)

Ta có :

A = 2(x\(_1\)\(^2\) + x\(_2\)\(^2\) ) - 5x\(_1\)x\(_2\)

= 2*[(x\(_1\)+x\(_2\))\(^2\) - 2x\(_1\)x\(_2\)] - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 4x\(_1\)x\(_2\) - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Vậy A = 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Mà A = 27

\(\Leftrightarrow\) 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\) = 27

\(\Leftrightarrow\) 2*(2m)\(^2\) - 9*(2m-1) = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m - 18 = 0 (1)

\(\Delta\)' = 9\(^2\) - 8*(-18) = 225 > 0

\(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{225}\) = 15

\(\Delta\)' > 0 nên phương trình (1) có 2 nghiệm phân biệt

m\(_1\)= \(\frac{9+15}{8}\) = 3

m\(_2\)= \(\frac{9-15}{8}\) = \(\frac{-3}{4}\)

Vậy với m = 3 hoặc m = -3/4 thì A = 27

12 tháng 7 2017

a) thay m=1 vào phương trình ta được phương trình:

\(x^2-2\left(1-1\right)x-2.1=0\\ \Leftrightarrow x^2-2x-2=0\\ \Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2\right)=12\)

vậy phương trình có hai nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+\sqrt{12}}{2}=1+\sqrt{3}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-\sqrt{12}}{2}=1-\sqrt{3}\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

7 tháng 4 2019

a) \(2x^3-5x^2+2x=0\)

<=> \(x\left(2x^2-5x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\2x^2-5x+2=0\left(1\right)\end{cases}}\)

Giải (1) : \(\Delta=\left(-5\right)^2-4.2.2=9>0\)

pt (1) có 2 nghiệm phân biệt: 

\(\orbr{\begin{cases}x=\frac{5-\sqrt{9}}{2.2}=\frac{1}{2}\\x=\frac{5+\sqrt{9}}{2.2}=2\end{cases}}\)

Vậy có 3 nghiệm phân biệt...

b) \(\hept{\begin{cases}2x+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}2\left(-2-2y\right)+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow\hept{\begin{cases}-4-4y+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=3\\x=-8\end{cases}}}\)

d) phương trình có : \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Với mọi m

Như vậy phương trình có nghiệm với mọi m