Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\frac{1}{x^2+y^2}+\frac{2}{4xy}+\frac{1}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{1}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{4\cdot\frac{1}{4}}=4+1=5\)
Xảy ra khi \(x=y=\frac{1}{2}\)
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
Điều kiện: \(x;y;z>0\)
Ta có: \(A=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\frac{x}{4}+\frac{3x}{4}+\frac{y}{2}+\frac{y}{2}+\frac{z}{4}+\frac{3z}{4}+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3x}{4}+\frac{3}{x}\right)+\left(\frac{y}{2}+\frac{9}{2y}\right)+\left(\frac{z}{4}+\frac{4}{z}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
Áp dụng BĐT Cauchy cho 2 số dương, ta có:
\(A\ge2\sqrt{\frac{3x}{4}.\frac{3}{x}}+2\sqrt{\frac{y}{2}.\frac{9}{2y}}+2\sqrt{\frac{z}{4}.\frac{4}{z}}+\frac{1}{4}\left(x+2y+3z\right)\)
\(\Rightarrow A\ge2.\frac{3}{2}+2.\frac{3}{2}+2.1+\frac{1}{4}.20\)
\(\Rightarrow A\ge13\)
Dấu = xảy ra khi \(x=2\)\(;\)\(y=3\)\(;\)\(z=4\)
Vậy \(A_{Min}=13\Leftrightarrow x=;y=3;z=4\)
đáng nhẽ đề phải là \(x+y\ge1\)chứ nhỉ
\(\frac{1}{x^3+y^3+xy}=\frac{1}{\left(x+y\right)\left(x^2+y^2+xy\right)+xy}\ge\frac{1}{\left(x+y\right)^2}\ge1\)
Vậy GTNN của \(\frac{1}{x^3+y^3+xy}\)bằng 1 đạt được khi \(x=y=\frac{1}{2}\)