Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(1=\left(x+y\right)^3\)vào biểu thức A ta có :
\(A=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}\)
\(=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{\frac{3xy\left(x^3+y^3\right)}{xy\left(x^3+y^3\right)}}\)\(=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)(chỗ này áp dụng cosi 2 số)
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
Ta có :
\(P=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)
\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{3}\)
Vậy GTNN của P là \(4+2\sqrt{3}\) khi = \(\frac{3xy}{x^3+y^3}=\frac{x^3+y^3}{xy}\)và x + y = 1
P/s : tự giải dấu "=" nhé. mình lười ghi
Ta có \(P=\frac{1}{\left(x+y\right)^3-3xy\left(x+y\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1-2xy}{xy\left(1-3xy\right)}\)
Theo Cosi \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Gọi \(P_0\)là một giá trị của P khi đó \(\exists x,y\)để \(P_0=\frac{1-2xy}{xy\left(1-3xy\right)}\Leftrightarrow3P_0\left(xy\right)^2-\left(2+P_0\right)xy+1=0\left(1\right)\)
Để tồn tại x,y thì (1) phải có nghiệm xy \(\Leftrightarrow\Delta=P_0^2-8P_0+4\ge0\Leftrightarrow\orbr{\begin{cases}P_0\ge4+2\sqrt{3}\\P_0\le4-2\sqrt{3}\end{cases}}\)
Để ý rằng với giả thiết bài toán thì B>0. Do đó ta có \(P_0\ge4+2\sqrt{3}\)
Với \(P_0=4+2\sqrt{3}\Rightarrow xy=\frac{2+P_0}{6P_0}=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\Rightarrow x\left(1-x\right)=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x^2-x+\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}=0\Leftrightarrow x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2},x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\)
Vậy \(min_P=4+2\sqrt{3}\)đạt được khi \(\orbr{\begin{cases}x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\\x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\end{cases}}\)
đáng nhẽ đề phải là \(x+y\ge1\)chứ nhỉ
\(\frac{1}{x^3+y^3+xy}=\frac{1}{\left(x+y\right)\left(x^2+y^2+xy\right)+xy}\ge\frac{1}{\left(x+y\right)^2}\ge1\)
Vậy GTNN của \(\frac{1}{x^3+y^3+xy}\)bằng 1 đạt được khi \(x=y=\frac{1}{2}\)
à dấu = mình sai rồi , bạn tìm lại nhé