Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(x;y⋮̸3\)
\(\Rightarrow x^2;y^2\) chia 3 dư 1
\(\Rightarrow z^2=x^2+y^2\) chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy \(\left[{}\begin{matrix}x⋮3\\y⋮3\end{matrix}\right.\Rightarrow xy⋮3\)
Chứng minh tương tự \(xy⋮4\)
(3;4)=1 => x.y chia hết cho 12
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
a/ \(A=xy+y\sqrt{x}+\sqrt{x}+1\left(x\ge0\right)\)
\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}+1\)
\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)
b/ \(B=x-3\sqrt{xy}+2y\left(x\ge0;y\ge0\right)\)
\(=x-\sqrt{xy}-2\sqrt{xy}+2y\)
\(=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)\)
c/\(C=2a-7\sqrt{ab}+5b\left(x\ge0;y\ge0\right)\)
\(=2a-2\sqrt{ab}-5\sqrt{ab}+5b\)
\(=2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-5\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-5\sqrt{b}\right)\)
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
\(a,B=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}\right):\left(\frac{1-xy+x+y+2xy}{1-xy}\right)\)
\(B=\frac{\sqrt{x}+\sqrt{y}+x\sqrt{y}+y\sqrt{x}+\sqrt{x}-\sqrt{y}-x\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{1+xy+x+y}\)
\(B=\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(y+1\right)+\left(y+1\right)}\)
\(B=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}\)
\(B=\frac{2\sqrt{x}}{x+1}\)
\(b,B=\frac{2\sqrt{\frac{2}{2+\sqrt{3}}}}{\frac{2}{2+\sqrt{3}}+1}\)
\(\frac{2\sqrt{\frac{4}{4+2\sqrt{3}}}}{\frac{4}{4+2\sqrt{3}}+1}\)
\(B=\frac{2\sqrt{\frac{4}{\left(\sqrt{3}+1\right)^2}}}{\frac{4}{\left(\sqrt{3}+1\right)^2}+1}\)
\(B=\frac{2.2}{\sqrt{3}+1}:\frac{4+2\sqrt{3}}{\sqrt{3}+1}\)
\(B=\frac{4}{\left(\sqrt{3}+1\right)^2}\)
\(B=\left(\frac{2}{\sqrt{3}+1}\right)^2\)
\(c,B=\frac{2\sqrt{x}}{x+1}\)
\(B=\frac{2}{\sqrt{x}+\frac{1}{\sqrt{x}}}\)
ta có :
\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)
dấu "=" xảy ra khi \(x=1\)
\(< =>MAX:B=\frac{2}{2}=1\)
Đk: x \(\ge\)0; y \(\ge\)0; xy \(\ne\)1
Ta có: B = \(\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
B = \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{1-xy}\)
B = \(\frac{x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}\cdot\frac{1-xy}{x+y+xy+1}\)
B = \(\frac{2\sqrt{x}+2y\sqrt{x}}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{2\sqrt{x}}{x+1}\)
b) Ta có: \(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4-2\sqrt{3}}{4-3}=4-2\sqrt{3}\)
=> \(x=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)=> \(\sqrt{x}=\sqrt{3}-1\)
Do đó, B = \(\frac{2.\left(\sqrt{3}-1\right)}{4-2\sqrt{3}+1}=\frac{2\sqrt{3}-2}{5-2\sqrt{3}}=\frac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\frac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)
B = \(\frac{6\sqrt{3}+2}{13}\)
c) Ta có: \(\frac{1}{B}=\frac{x+1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\ge2\cdot\sqrt{\frac{\sqrt{x}}{2}\cdot\frac{1}{2\sqrt{x}}}=2\cdot\sqrt{\frac{1}{4}}=1\)(đk: x \(\ne\)0)
=> \(B\le\frac{1}{1}=1\)Dấu "==" xảy ra<=> \(\frac{\sqrt{x}}{2}=\frac{1}{2\sqrt{x}}\) => \(2\sqrt{x}=2\) => \(x=1\)
xét tam giác ABC vuông tại A có:
AB2+AC2=BC2 (định lí pytago)
hay 32+72=BC2
=>BC=\(\sqrt{3^2+7^2}=\sqrt{58}\)
ta lại có: x.BC=AB.AC
hay x=3.7:\(\sqrt{58}\)=\(\frac{21}{\sqrt{58}}\)
vậy x=...
y=...
Xét tam giác ABC vuông tại A, đường cao AH ( tạm gọi chân đường cao là H nhé )
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=9+49=58\Rightarrow BC=\sqrt{58}\)cm
hay \(y=\sqrt{58}\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{9}+\frac{1}{49}=\frac{58}{441}\)
\(\Rightarrow AH^2=\frac{441}{58}\Leftrightarrow AH=\frac{21\sqrt{58}}{58}\)cm hay \(x=\frac{21\sqrt{58}}{58}\)cm