Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
với \(x+y+z=3\Rightarrow3x=x\left(x+y+z\right)=x^2+xy+xz\Rightarrow3x+yz=\left(x+y\right)\left(x+z\right)\)
tương tự mấy cái kia nhé
Áp dụng bđt bu nhi a ta có \(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{xz}+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge\sqrt{xz}+\sqrt{xy}\)
=> \(x+\sqrt{3x+yz}\ge x+\sqrt{xy}+\sqrt{xz}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
tương tự mấy cái kia rồi cộng vào ta có
\(A\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (ĐPCM)
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{3\sqrt[3]{xyz}.3}{\sqrt[3]{xyz}}=9.\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{xy+yz+xz}{xyz}\right)\ge9\Leftrightarrow xy+yz+xz\ge\frac{9xyz}{x+y+z}\)
lại có \(x+y+z=\sqrt{xyz}\Leftrightarrow\left(x+y+z\right)^2=xyz\)
=> đpcm
vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi
bài 1
\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)
\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Bài 2 là chuyên Bình Thuận, 2016-2017
Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:
\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)
Cộng từng vế của 3 BĐT trên. ta được:
\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)
Đẳng thức xảy ra khi x = y = z
Giả sử \(x;y⋮̸3\)
\(\Rightarrow x^2;y^2\) chia 3 dư 1
\(\Rightarrow z^2=x^2+y^2\) chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy \(\left[{}\begin{matrix}x⋮3\\y⋮3\end{matrix}\right.\Rightarrow xy⋮3\)
Chứng minh tương tự \(xy⋮4\)
(3;4)=1 => x.y chia hết cho 12
Thiếu câu b hic hic