K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

Max: Áp dụng BĐT Bynyakovski: \(P=\Sigma\sqrt{x+1}\le\sqrt{3\left(x+y+z+3\right)}=3\sqrt{2}\)

Đẳng thức xảy ra khi x =y = z = 1

Min: Chú ý x +y + z = 3;x,y,z>0 => 0<x<3. Trước hết ta chứng minh:

\(\sqrt{x+1}\ge\frac{1}{3}x+1\Leftrightarrow\frac{1}{9}x\left(3-x\right)\ge0\) (đúng)

Do đó \(P\ge\frac{1}{3}\left(x+y+z\right)+3=4\)

Đẳng thức xảy ra khi (x;y;z) =(0;0;3) và các hoán vị.

6 tháng 3 2020

x,y,z > 0 => 0 < x < 3. Còn lại y chang

\(\because\text{tui nhầm}\)

18 tháng 12 2015

bài này dễ nhưng bạn phải chứng minh bđt này đã:

\(\frac{1}{a+b+c+d}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)

với a;b;c;d là các số dương

bạn có thể cm bđt trên bằng cách biến đổi tương đương hoặc cm bđt Schwat (Sơ-vác)

Mình là 1 phần tử đại diện còn lại là hoàn toàn tt nhé 

ta có \(\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}=\frac{1}{2\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{y}+\sqrt{z}\right)+\left(\sqrt{x}+\sqrt{z}\right)}\)

\(\le\frac{1}{16}\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{x}+\sqrt{z}}\right)\)

Tương tự ta cm được 

\(VT\le\frac{1}{16}.4\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)\(=\frac{1}{4}.3=\frac{3}{4}\)

dấu "=" khi x=y=z

 

 

 

20 tháng 11 2019

thanh niên này chắc VIP dài quá:))

** Max 

\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)

Theo bunhia ta có:

\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)

*** Min

Giả sử \(1\ge y\ge x\ge z\)

Ta có:

\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Mặt khác:

\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)

Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)

Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)

Khi đó 

\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.

21 tháng 11 2019

Em có cách này cho phần min nhưng không chắc lắm..

Min:

Giả sử \(x\ge y\ge z\)

\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)

\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)

\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.

21 tháng 10 2018

Bài 1: \(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)

ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)

\(\Leftrightarrow x-2\sqrt{x}+1+\left(y-1\right)-2\cdot\sqrt{y-1}\cdot2+4+\left(z-2\right)-2\cdot\sqrt{z-2}\cdot3+9=0\)\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+\left(\sqrt{z-2}-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=2\\\sqrt{z-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=5\\z=11\end{matrix}\right.\)

27 tháng 10 2022

Bài 2: 

Q=|x+2|+|x-2|>=|x+2+2-x|=4

Dấu = xảy ra khi (x+2)(x-2)<=0

=>-2<=x<=2

1 tháng 4 2022

giải bằng Bunhiaskopki nha bạn, search gg

1 tháng 4 2022

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

NV
28 tháng 10 2019

Áp dụng BĐT Bunhiacopxki:

\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{2\left(x+1\right)^2}=\sqrt{2}\left(x+1\right)\)

Tương tự: \(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\); \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(3-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}=9-3\sqrt{2}\)

Cộng vế với vế:

\(A\le\sqrt{2}\left(x+y+z+3\right)+9-3\sqrt{2}=9+3\sqrt{2}\)

\(A_{max}=9+3\sqrt{2}\) khi \(x=y=z=1\)

5 tháng 2 2020

Câu 1:

\(y^2+yz+z^2=1-\frac{3x^2}{2}\)

\(\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\)

\(\Leftrightarrow\left(y+z\right)^2+y^2+z^2+3x^2=2\)

\(\Leftrightarrow\left(y+z\right)^2+x^2+2x\left(y+z\right)+y^2+z^2+2x^2-2x\left(y+z\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2-\left(x-z\right)^2\)

\(\Leftrightarrow A^2=2-\left[\left(x-y\right)^2+\left(x-z\right)^2\right]\le2\forall x;y;z\)

\(\Leftrightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Vậy \(A_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

\(A_{max}=\sqrt{2}\Leftrightarrow a=b=c=\frac{\sqrt{2}}{3}\)

Câu 2:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+x^2+y^2+z^2}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Câu 3:

\(P=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\) ( \(a\ge3;b\ge4;c\ge2\) )

\(P=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)

Áp dụng BĐT Cauchy:

\(P=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{2}\cdot\sqrt{c-2}}{c}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}\cdot\sqrt{a-3}}{a}+\frac{1}{2}\cdot\frac{2\cdot\sqrt{b-4}}{b}\)

\(\le\frac{1}{\sqrt{2}}\cdot\frac{1}{2}\cdot\frac{2+c-2}{c}+\frac{1}{\sqrt{3}}\cdot\frac{1}{2}\cdot\frac{3+a-3}{a}+\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4+b-4}{b}=\frac{1}{2}\cdot\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{2}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

Câu 4:

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a;b\ge0\right)\)

\(M=a^2-2ab+3b^2-2a+1\)

\(M=a^2-a\left(2b+2\right)+3b^2+1\)

\(\Delta=\left(2b+2\right)^2-4\left(3b^2+1\right)\)

\(=-8b^2+8b\)

\(=-8b\left(b+1\right)\ge0\)

\(b\ge0\) nên \(-8b\left(b+1\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow b=0\)

Khi đó \(M=a^2-2a+1=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Vậy \(M_{min}=1\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

5 tháng 2 2020

Cau này e nghĩ không đáng là câu hỏi hay:v

31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1