Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề bài yêu cầu Max thì đây nhé :)
Áp dụng bđt Bunhiacopxki , ta có \(A^2=\left(1.\sqrt{x}+1.\sqrt{y}+1.\sqrt{z}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]=3\left(x+y+z\right)=3\)
\(\Rightarrow\left|A\right|\le\sqrt{3}\Rightarrow0\le A\le\sqrt{3}\)
Vậy MAX A = \(\sqrt{3}\) khi x = y = z = 1/3
Bài này không tìm được MIN nhé.
Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:
\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó:
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)
\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)
\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị
Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:
\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)
\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)
\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))
Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.
2/ Ta có
\(\frac{x+y}{4}+\frac{x^2}{x+y}\)\(\ge\)x
\(\frac{y+z}{4}+\frac{y^2}{y+z}\ge y\)
\(\frac{z+x}{4}+\frac{z^2}{z+x}\ge z\)
Từ đó ta có VT \(\ge\)\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}\)= \(\frac{1}{2}\)
Đạt được khi x = y = z = \(\frac{1}{3}\)
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
thanh niên này chắc VIP dài quá:))
** Max
\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)
Theo bunhia ta có:
\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)
*** Min
Giả sử \(1\ge y\ge x\ge z\)
Ta có:
\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)
\(\Leftrightarrow xz=0\)
Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)
Mặt khác:
\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)
\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)
Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)
Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)
Khi đó
\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)
Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.
Em có cách này cho phần min nhưng không chắc lắm..
Min:
Giả sử \(x\ge y\ge z\)
\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)
\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)
\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.