![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))
BT1:
Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{16-10-2\sqrt{5}}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
Từ đó thay vào: \(\left(A-B\right)^2\)
\(=A^2-2AB+B^2\)
\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)
\(=10-2\sqrt{5}\)
\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)
BT2:
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\cdot3=2\)
\(\Rightarrow B=\sqrt{2}\)
\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
BT3:
đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)
\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)
\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)
\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)
\(C=\frac{4x^2+8x}{4x+8}=x\)
Vậy C = x
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề bài 1 và 2.b nhé !
2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)
\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)
\(A=5\sqrt{2}-3-5\sqrt{2}-1\)
\(A=-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=\(\sqrt{2+\sqrt{3}}\) \(.\) \(\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)
=\(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)
=\(\sqrt{4-\left(\sqrt{3}\right)^2}\)
=\(\sqrt{4-3}\)
=\(\sqrt{1}\)
= \(1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Điều kiện xác định của pt :
\(\begin{cases}x^2+5x+4\ge0\\x^2+5x+2\ge0\end{cases}\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-4\\x\ge-1\end{array}\right.\)
Ta có : \(x^2+5x-\sqrt{x^2+5x+4}=-2\)
\(\Leftrightarrow\left(x^2+5x+4\right)-\sqrt{x^2+5x+4}-2=0\)(1)
Đặt \(t=\sqrt{x^2+5x+4},t\ge0\)
\(pt\left(1\right)\Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(\text{loại}\right)\\t=2\left(\text{nhận}\right)\end{array}\right.\)
Với t = 2 ta có pt : \(x^2+5x+4=4\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(\text{nhận}\right)\\x=-5\left(\text{nhận}\right)\end{array}\right.\)
Vậy tập nghiệm của pt : \(S=\left\{-5;0\right\}\)
b) Điều kiện xác định của pt :
\(\begin{cases}x^2-3x+2\ge0\\x+3\ge0\\x-2\ge0\\x^2+2x-3\ge0\end{cases}\) \(\Leftrightarrow x\ge2\)
Ta có ; \(\sqrt{x^2-3x+2}+\sqrt{x+03}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x-3}\right)-\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x-3}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\left(\text{nhận}\right)\\-2=-3\left(\text{vô lí - loại}\right)\end{array}\right.\)
Vậy pt có nghiệm x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
\(x=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\)
\(\Leftrightarrow x^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\)
\(\Leftrightarrow x^2=2+x\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
Do x > 0 nên x = 2