\(\sqrt{2+\sqrt{3}}\) x \(\sqrt{2-\sqrt{2+\sqrt{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

=\(\sqrt{2+\sqrt{3}}\) \(.\) \(\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)

=\(\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)

=\(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)

=\(\sqrt{4-\left(\sqrt{3}\right)^2}\)

=\(\sqrt{4-3}\)

=\(\sqrt{1}\)

\(1\)

9 tháng 7 2016

không biết

15 tháng 7 2018

bài 2 rút gọn :

a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

= \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\)

=\(\sqrt{2}-1+3-\sqrt{2}\)

=2

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{7}-3\sqrt{3}+1\)

c)

15 tháng 7 2018

Help mee <3

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

9 tháng 6 2019

a/ \(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

Mấy câu kia bấm máy tính là xong hết

B2:

a/ \(=\sqrt{-\left(x^2+5\right)}\)

\(x^2+5>0\forall x\Rightarrow-\left(x^2+5\right)< 0\forall x\)

Vậy biểu thức luôn ko đc xđ

b/ x-4\(\ge0\) \(\Rightarrow x\ge4\)

c/ Có -3<0

Để căn thức xđ\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)

d/ Có -(x2+1)<0\(\forall\) x

Để căn thức có nghĩa \(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

26 tháng 7 2019

Bài Làm:

1, Tìm ĐKXĐ:

a, Để \(\sqrt{\frac{x^2+3}{3-2x}}\) có nghĩa thì: \(\frac{x^2+3}{3-2x}\ge0\)

\(x^2+3>0\forall x\) nên \(3-2x\ge0\)

\(\Leftrightarrow x\le\frac{3}{2}\)

Vậy ...

b, Để \(\sqrt{\frac{-2}{x^3}}\) có nghĩa thì: \(\frac{-2}{x^3}\ge0\)

\(-2< 0\) nên \(x^3\le0\Leftrightarrow x\le0\)

Vậy ...

c, Để \(\sqrt{x\left(x-2\right)}\) có nghĩa thì: \(x\left(x-2\right)\ge0\)

\(TH1:\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

\(TH2:\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\Leftrightarrow x\le0\)

\(\Leftrightarrow\) \(x\ge2\) hoặc \(x\le0\)

Vậy ...

5 tháng 8 2019
https://i.imgur.com/zicDfcM.jpg
5 tháng 8 2019

1.

a) \(A=\sqrt{1}-4a+4a^2-2a\)

\(A=4a^2-6a+1\)

b) \(B=\frac{5-x}{x^2-10x+25}=\frac{-\left(x-5\right)}{\left(x-5\right)^2}=\frac{-1}{x-5}\)

c) \(C=\sqrt{\left(x-1\right)^2}+\frac{x-1}{\sqrt{x^2-2x+1}}\)

\(C=\left|x-1\right|+\frac{x-1}{\sqrt{\left(x-1\right)^2}}=\left|x-1\right|+\frac{x-1}{\left|x-1\right|}\)

+) Xét \(x-1>0\Leftrightarrow x>1\)ta có \(C=x-1+\frac{x-1}{x-1}=x-1+1=x\)

+) Xét \(x-1< 0\Leftrightarrow x< 1\)ta có \(C=1-x+\frac{x-1}{1-x}=1-x-1=-x\)

2.

a) \(\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\sqrt{4-3}=1\)

b) \(\sqrt{3\sqrt{2}-2\sqrt{3}}\cdot\sqrt{3\sqrt{2}+2\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}\)

\(=\sqrt{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}\)

\(=\sqrt{18-12}=\sqrt{6}\)

c) Sửa luôn đề \(\sqrt{13-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2-2\cdot2\sqrt{3}\cdot1+1}+\sqrt{2^2+2\cdot2\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2\sqrt{3}-1\right|+\left|2+\sqrt{3}\right|\)

\(=2\sqrt{3}-1+2+\sqrt{3}\)

\(=3\sqrt{3}+1\)

25 tháng 8 2019

a)\(\frac{3-\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}=\sqrt{3}-1\)

b)\(\frac{2\sqrt{2}+\sqrt{6}}{4+\sqrt{12}}=\frac{\sqrt{2}\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}=\frac{\sqrt{2}}{2}\)

c)\(\frac{1-\sqrt{a^3}}{a-1}=\frac{1-\sqrt{a}^3}{-\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{-\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{-1-\sqrt{a}-a}{1+\sqrt{a}}\)

d)\(\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{5}+1}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{5}+1}=\frac{\left|\sqrt{5}+1\right|}{\sqrt{5}+1}=\frac{\sqrt{5}+1}{\sqrt{5}+1}=1\)

e)\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3+2\sqrt{6}+2}}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{3}+\sqrt{2}}=\frac{\left|\sqrt{3}+\sqrt{2}\right|}{\sqrt{3}+\sqrt{2}}=1\)

25 tháng 8 2019

Yến Nhi Phạm Trần câu 2 sai đề hay sao í số xấu lắm

18 tháng 8 2018

1)

a. \(\sqrt{\dfrac{25}{7}}.\sqrt{\dfrac{7}{9}}=\sqrt{\dfrac{25.7}{7.9}}=\sqrt{\dfrac{25}{9}}=\dfrac{5}{3}\)

b. \(\left(\sqrt{\dfrac{9}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{2}\right).\sqrt{2}=3+1-2=2\)

c. \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right).\sqrt{6}=4-12+10=2\)

d. \(\left(\sqrt{\dfrac{2}{3}}-\sqrt{\dfrac{3}{2}}\right)^2=\dfrac{2}{3}+\dfrac{3}{2}-2\sqrt{\dfrac{2}{3}.\dfrac{3}{2}}=\dfrac{1}{6}\)

2)

a. \(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

b. \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)

c. \(1+\sqrt{6-2\sqrt{5}}=1+\sqrt{5-2\sqrt{5}+1}=1-\sqrt{\left(\sqrt{5}-1\right)^2}=1-\sqrt{5}+1=2-\sqrt{5}\)

d. \(\sqrt{7-2\sqrt{10}}+\sqrt{2}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}+\sqrt{2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{2}=\sqrt{5}-\sqrt{2}+\sqrt{2}=\sqrt{5}\)

3. \(a.A=x^2+2x+16=\left(\sqrt{2}-1\right)^2+2.\left(\sqrt{2}-1\right)+16=2-2\sqrt{2}+1+2\sqrt{2}-2+16=17\)

\(b.B=x^2+12x-14=\left(5\sqrt{2}-6\right)^2+12.\left(5\sqrt{2}-6\right)-14=50+36-60\sqrt{2}+60\sqrt{2}-72-14=0\)

18 tháng 8 2018

Help me nha leuleu @Phùng Khánh Linh@Nhã Doanh@Liana@Yukru Cảm ơn trước nhé vui

28 tháng 5 2019

Bài 1 :

a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)

b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)

Bài 2 :

a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)

b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)

c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)

Bài 3 :

a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)

= \(\sqrt{5}-2-\sqrt{5}\)

= -2 = VP

b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)

VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)

= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)

= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)

=\(\sqrt{7}+4-\sqrt{7}\)

= 4 =VP

c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)

VT = \(16-8\sqrt{7}+7\)

= 23 - \(8\sqrt{7}\) = VP

Bài 4:

a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

Tương tự

Bài 5 :

a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)

=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1

=> x+3 = 3x-1

+) x+3 =3x-1 => x= 2

+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)

b)+c) Tương tự