\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)

b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)

c: \(=5-2\sqrt{6}\)

d: \(=18-1=17\)

e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)

11 tháng 8 2018

\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)

\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)

\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)

\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)

\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)

* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)

* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)

\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)

\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)

\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)

\(H=\sqrt{34+2\sqrt{161}}\)

\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

19 tháng 7 2017

\(\sqrt{28-6\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=3\sqrt{3}-1\)

\(\sqrt{6-\sqrt{20}}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-1\)

\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)

\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)

\(=\sqrt{x+2}+\sqrt{x+1}\)

\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)

\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)

\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)

\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)

\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)

\(=6\sqrt{2}\)

19 tháng 7 2017

\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)

\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

15 tháng 7 2016

\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}}=\sqrt{\left(3^2\right)-\left(\sqrt{5+2\sqrt{3}}\right)^2}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

\(B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-2-\sqrt{2}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{4-2}=\sqrt{2}.\sqrt{2}=2\)

\(C=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}=\sqrt{2+\sqrt{3}}.\sqrt{2^2-\left(2+\sqrt{3}\right)}\)

\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)

15 tháng 7 2016

\(D=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{4+\sqrt{15}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4^2-15}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

\(E=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)

\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)

\(=2\sqrt{3-\sqrt{5}}+2\sqrt{3+\sqrt{5}}=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)

\(=\sqrt{2}.\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)

19 tháng 6 2018

e , \(\sqrt{11^2-\left(6\sqrt{2}\right)^2}\)

27 tháng 10 2019

g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

Bài 1: Tính a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\) b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\) c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\) e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\) Bài 2: Giải pt: a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\) c)...
Đọc tiếp

Bài 1: Tính

a) \(\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)

b) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

c) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

d) \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)

e) \(\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)

Bài 2: Giải pt:

a) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

b) \(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)

c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

d) \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

e) \(\sqrt{2x+1}+\sqrt{17-2x}=x^4-8x^3+17x^2-8x+22\)

f) \(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)

g) \(\sqrt{3x^2+12x+16}+\sqrt{y^2-4y+13}=5\)

Bài 3: Cho biểu thức:

P= \(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

a) Rút gon P

b) Tìm x để P đạt GTNN, tìm GTNN đó.

c) Tìm x \(\in\) Z để P \(\in\) Z

@Nguyễn Văn Đạt@Akai Haruma Help me please~~~~ Giải thích cẩn thân hộ với.

3
21 tháng 7 2019
https://i.imgur.com/FpJWAoR.jpg

Tag nhầm người rồi anh ơi !! Em mới lớp 7 không biết mấy cái này

AH
Akai Haruma
Giáo viên
10 tháng 9 2020

Bài 1:
Xét tử số:

\(\sqrt{14+6\sqrt{5}}-\sqrt{14-6\sqrt{5}}=\sqrt{3^2+5+2.3\sqrt{5}}-\sqrt{3^2+5-2.3\sqrt{5}}\)

\(=\sqrt{(3+\sqrt{5})^2}-\sqrt{(3-\sqrt{5})^2}=3+\sqrt{5}-(3-\sqrt{5})=2\sqrt{5}\)

Xét mẫu số:
\(\sqrt{(\sqrt{5}+1)\sqrt{6-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{5+1-2\sqrt{5}}}=\sqrt{(\sqrt{5}+1)\sqrt{(\sqrt{5}-1)^2}}\)

\(=\sqrt{(\sqrt{5}+1)(\sqrt{5}-1)}=\sqrt{4}=2\)

Do đó: $A=\frac{2\sqrt{5}}{2}=\sqrt{5}$

10 tháng 9 2020

dạ em cảm ơn