K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 7 2021

\(y=sin\left(x-\dfrac{\pi}{2}\right)=-sin\left(\dfrac{\pi}{2}-x\right)=-cosx\)

\(y\left(-x\right)=-cos\left(-x\right)=-cosx=y\left(x\right)\)

Hàm đã cho là hàm chẵn

30 tháng 7 2021

e cảm ơn ạ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa

\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\) \

 Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) =  - \sin 2x - \tan 2x =  - \left( {\sin 2x + \tan 2x} \right) =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)

Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) =  - \sin x.\cos 2x =  - f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ

d) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \sin \left( { - x} \right).\cos \left( { - x} \right) =  - \sin x.\cos x\\f\left( x \right) = \sin x.\cos x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

Hàm số \(y = \sin x\cos x\) là hàm số lẻ

b)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \tan \left( { - x} \right) + \cot \left( { - x} \right) =  - \tan x - \cot x\\f\left( x \right) = \tan x + \cot x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

Hàm số \(y = \tan x + \cot x\) là hàm số lẻ

c)     Ta có:

 \(\left. \begin{array}{l}f\left( { - x} \right) = {\sin ^2}\left( { - x} \right) = {\left( { - \sin \left( x \right)} \right)^2} = {\sin ^2}x\\f\left( x \right) = {\sin ^2}x\end{array} \right\} \Rightarrow f\left( { - x} \right) = f\left( x \right)\)

Hàm số \(y = {\sin ^2}x\) là hàm số chẵn

17 tháng 6 2021

Đặt `y=f(x)=x-sinx`

Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`

`=>` Hàm lẻ.

NV
17 tháng 12 2020

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)

\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

a. TXĐ: $D=\mathbb{R}$

Xét $x=3\in D$ thì $-3\in D$

$y(-3)=3^2\sin (-3+3)=0; -y(-3)=0$ 

$y(3)=3^2\sin 6\neq 0$

Do đó: $y(3)\neq y(-3)$ và $y(3)\neq -y(-3)$ nên hàm không chẵn cũng không lẻ.

b. ĐKXĐ: $D=\mathbb{R}$

Với $x\in D$ thì $-x\in D$

$y(-x)=\sqrt{2-\sin ^2(-3x)}=\sqrt{2-(-\sin 3x)^2}$

$=\sqrt{2-(\sin 3x)^2}=y(x)$

Do đó hàm là hàm chẵn. 

15 tháng 1 2017

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.

5 tháng 9 2016

a) y = sinx - cosx

Đặt \(f\left(x\right)\) = y = sinx - cosx

Ta có : \(f\left(-x\right)=sin\left(-x\right)-cos\left(-x\right)\)

       <=> \(f\left(-x\right)=-sinx+cosx\)

       <=> \(f\left(-x\right)\ne f\left(x\right)\)

Vậy hàm số đã cho là hàm số không chẵn , không lẻ .

b) y = sinxcos2x + tanx

y = \(f\left(x\right)=sinxcos^2x+tanx\)

TXĐ : \(D_1=R\backslash\left\{\frac{\pi}{2}+k\pi\left|k\in Z\right|\right\}\)

Vì với mọi x \(\in\) D1 , ta có - x \(\in\) D1

và \(f\left(-x\right)=sin\left(-x\right)cos^2\left(-x\right)+tan\left(-x\right)\)

                 \(=-sinxcos^2x-tanx=-f\left(x\right)\)

Nên hàm số đã cho là hàm số lẻ

6 tháng 9 2016

cô ơi , tại sao lại không thể biến đổi \(-\sin x+\cos x\) thành \(-\left(\sin x-\cos x\right)\)?