Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là
\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)
b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:
2 5 6 7 8 9 10 11 12 14 16
+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)
*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11
a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x = \frac{{1{\rm{ + }}2{\rm{ + }}4{\rm{ + }}5{\rm{ + }}9{\rm{ + }}10{\rm{ + }}11}}{7} = 6\)
b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)
c) Tứ phân vị của mẫu số liệu trên là:
Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)
Trung vị của dãy 9, 10, 11 là: \({Q_3} = 10\)
Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)
d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)
e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)
g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)
h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} = \sqrt {\frac{{96}}{7}} \)
Ta có: 9 là một số lẻ nên số trung vị cùa mẫu số liệu trên là số ở vị trí chính giữa
Do đó; số trung vị của mẫu số liệu là: Me= 7
Chọn C
Chọn C.
Vì số học sinh là số chẵn nên số trung vị của 100 số liệu này là hay 50 và 51.
Vậy số trung vị của 100 số liệu là chiều cao trung bình của học sinh thứ 50 và 51.
Số trung bình cộng của mẫu số liệu trên là: \(\overline X = \frac{{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9 + 10}}{9} \approx 5,9\)
Nhận xét: Quan sát mẫu số liệu trên, ta thấy nhiều số liệu có sự chênh lệch lớn so với số trung bình cộng. Vì vậy, ta không thể lấy số trung bình cộng làm đại diện cho mẫu số liệu mà ta phải chọn số đặc trưng khác thích hợp hơn.
Chọn A.
Do 99 là số lẻ nên số trung vị của dãy số liệu trên là số đứng ở vị trí chính giữa ; tức là giá trị đứng ở vị trí thứ 50.
a) Ta có: \(8 - 7 = 1;6 - 7 = - 1;7 - 7 = 0;5 - 7 = - 2;9 - 7 = 2\)
b) +) Bình phương các độ lệch là: \({(8 - 7)^2} = 1;{(6 - 7)^2} = 1;{(7 - 7)^2} = 0;{(5 - 7)^2} = 4;{(9 - 7)^2} = 4\)
+) Trung bình cộng của bình phương các độ lệch là:
\({s^2} = \frac{{{{(8 - 7)}^2} + {{(6 - 7)}^2} + {{(7 - 7)}^2} + {{(5 - 7)}^2} + {{(9 - 7)}^2}}}{5} = 2\)
Chọn D.
+ Khi ta đổi chỗ 2 giá trị đứng đầu tiên và cuối cùng cho nhau thì tần số của mỗi giá trị không đổi nên giá trị có tần số lớn nhất không đổi. Do đó; mốt không đổi.
+ Sau khi sắp xếp lại các số liệu (cụ thể là đổ chỗ số đầu tiên và cuối cùng cho nhau) thì ta vẫn được dãy số liệu như ban đầu nên số trung vị không đổi.
+ Tương tự; phương sai không đổi.
Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).