Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Lớp 10C:
* Lớp 10D:
b) Kết quả lớp 10D có độ lệch chuẩn nhỏ hơn kết quả lớp 10C nên kết quả lớp 10D đồng đều hơn.
Trung vị tăng 0,5. Tứ phân vị cũng tăng 0,5.
Khi cộng thêm mỗi môn 0,5 điểm chuyên cần thì điểm trung bình tăng 0,5
=> Độ lệch của mỗi giá trị so với số trung bình vẫn không đổi \(\left( {{x_i} - \overline x} \right)\)
=> Độ lệch chuẩn không thay đổi.
Chọn C.
Cách 1. Ta có: Khi cộng vào mỗi số liệu của một dãy số liệu thống kê cùng một hằng số thì phương sai và độ lệch chuẩn không thay đổi. Do đó độ lệch chuẩn của dãy (2) vẫn là 2 kg.
Cách 2. Tính trực tiếp độ lệch chuẩn của dãy (2).
Đáp án: A.
'''''''''''''F'F'S'JURSMJHYT,JTHDNHTDNMYHJFGJHTMJHTMJYT
Số trung bình cộng của mẫu số liệu trên là: \(\overline X = \frac{{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9 + 10}}{9} \approx 5,9\)
Nhận xét: Quan sát mẫu số liệu trên, ta thấy nhiều số liệu có sự chênh lệch lớn so với số trung bình cộng. Vì vậy, ta không thể lấy số trung bình cộng làm đại diện cho mẫu số liệu mà ta phải chọn số đặc trưng khác thích hợp hơn.
Chọn A.
Lập bảng phân bố tần số; tần suất
Điểm trung bình cộng của nhóm là:
a) Ta lập bảng tần số:
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Tần số | 5 | 13 | 5 | 5 | 5 | 5 | 2 |
Từ đó ta thấy mốt của mẫu số liệu trên là: \({M_o} = 5\)
b) Tỉ lệ số học sinh lớp 10A đạt điểm từ 8 trở lên là: \(\frac{{5 + 5 + 2}}{{40}} = 0,3 = 30\% \)
Tỉ lệ này cho thấy số học sinh đạt điểm giỏi của lớp 10A là \(30\% \)
+ Các giá trị khác nhau: x 1 = 3 , x 2 = 4 , x 3 = 5 , x 4 = 6 , x 5 = 7 , x 6 = 8 , x 7 = 9 , x 8 = 10 ⇒ A đúng.
+ Giá trị x7 = 9 xuất hiện 6 lần ⇒ Tân số là 6 ⇒ B đúng.
+ Giá trị x8= 10 xuất hiện 4 lần ⇒ Tần suất là 4 10 hay 10 % ⇒ C đúng ⇒ D sai.
Đáp án D.
a) Ta có: \(8 - 7 = 1;6 - 7 = - 1;7 - 7 = 0;5 - 7 = - 2;9 - 7 = 2\)
b) +) Bình phương các độ lệch là: \({(8 - 7)^2} = 1;{(6 - 7)^2} = 1;{(7 - 7)^2} = 0;{(5 - 7)^2} = 4;{(9 - 7)^2} = 4\)
+) Trung bình cộng của bình phương các độ lệch là:
\({s^2} = \frac{{{{(8 - 7)}^2} + {{(6 - 7)}^2} + {{(7 - 7)}^2} + {{(5 - 7)}^2} + {{(9 - 7)}^2}}}{5} = 2\)