Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(m=1-x^2\le1\) . Vậy ta xét các khoảng giá trị của m :
+ Nếu m = 1 thì \(x=0\) thỏa mãn nghiệm duy nhất.
+ Nếu \(0\le m< 1\) thì \(1-m>0\) , vậy lúc đó pt có hai nghiệm
\(x=\pm\sqrt{1-m}\)
+ Nếu \(m=0\) thì \(x=\pm1\)
+ Nếu \(m< 0\) thì \(x^2=1+m\Leftrightarrow x=\pm\sqrt{1+m}\) luôn có hai nghiệm.
Vậy m = 1 thỏa mãn đề bài.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 6
Để phương trình có vô số nghiệm thì
m+n-3=0 và 2m-3n+4=0
=>m+n=3 và 2m-3n=-4
=>m=1; n=2
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(f\left(x\right)\ge2\sqrt{\frac{16x^2}{x^2}}=8\)
Dấu "=" xảy ra khi \(x^2=\frac{16}{x^2}\Leftrightarrow x=\pm2\)
b/ Hàm này không tồn tại GTNN
c/ \(f\left(x\right)=x+3+\frac{25}{x+3}-4\ge2\sqrt{\frac{25\left(x+3\right)}{x+3}}-4=6\)
Dấu "=" xảy ra khi \(x+3=\frac{25}{x+3}\Leftrightarrow x=2\)
d/ \(f\left(x\right)=x+\frac{9}{x}+3\ge2\sqrt{\frac{9x}{x}}+3=9\)
Dấu "=" xảy ra khi \(x=\frac{9}{x}\Leftrightarrow x=3\)
Chọn A
Ta có –x2+x-1= 0 vô nghiệm,
6x2- 5x+1= 0 khi x= ½ hoặc x= 1/3
Bảng xét dấu
Suy ra f(x) > 0 khi và chỉ khi![](http://cdn.hoc24.vn/bk/3CJrkZPdGw6h.png)
Và f( x)< 0 khi và chỉ khi![](http://cdn.hoc24.vn/bk/0lj3UYwNH4oO.png)