Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số đó là a; b; c; d; e
Giả sử a<b<c<d<e
\(\Rightarrow d-b\ge2;e-c\ge2\)
Theo đề bài
\(a+b+c>d+e\)
\(\Rightarrow a>b-d+c-e\ge4\Rightarrow a>5\)
1) Các số lập được là: abc; acb; bac; bca; cab; cba
A = abc + acb + bac + bca + cab + cba
A = (100a + 10b + c) + (100a + 10c + b) + (100b + 10a + c) + (100b + 10c + a) + (100c + 10a + b) + (100c + 10b + a)
A = 222a + 222b + 222c
A = 222.(a + b + c)
A = 6.37.(a + b + c) chia hết cho 6 và 37 (đpcm)
2) Do x + y và x - y luôn cùng tính chẵn lẻ
Mà (x + y).(x - y) = 2002 là số chẵn
=> x + y và x - y cùng chẵn
=> x + y và x - y cùng chia hết cho 2
=> (x + y).(x - y) chia hết cho 4
Mà 2002 không chia hết cho 4 nên không tồn tại 2 số tự nhiên x; y thỏa mãn đề bài
1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84.
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương.
Vậy n = 40
1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2) Xin lỗi mình chỉ biết làm câu 1 thôi