K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

Câu 1: k=1

Câu 2: 195=3.5.13

Câu 3: n=2

Câu 4: 3^x+1-2=3^2+[5^2-3(2^2-1)]

              3^x-1=9+(25-3.3)

              3^x-1=9+16

              3^x-1=25

                 3^x=25+1

                 3^x=26

Vì x thuộc N nên ta không tìm được giá trị của x

(nếu đúng tki tích cho mk nha)

26 tháng 4 2015

\(\frac{-3}{x-1}\)nguyên khi và chỉ khi -3 chia hết cho x - 1 hay x - 1 là ước của 3

\(\frac{-4}{2x-1}\)nguyên khi và chỉ khi -4 chia hết cho 2x - 1 hay 2x - 1 là ước của 4

Lấy 3x + 7 chia x - 1 => \(\frac{4}{x-1}\)nguyên khi và chỉ khi 4 chia hết cho x - 1 hay x - 1 là ước của 4

Mk chỉ làm đc vậy thui à!!!!!

      

17 tháng 3 2018

2x-1/x+3=x/x+3 + x-1/x+3

17 tháng 3 2018

\(\frac{2x-1}{x+3}\)\(=\frac{2\left(x+3\right)-7}{x+3}\)\(=2-\frac{7}{x+3}\)\(\Rightarrow x+3\in U\left(7\right)\)

Bước tiếp theo bạn tự tính nhé!!!

Chúc bạn học tốt :)

19 tháng 7 2017

Để phân số \(\frac{n+8}{n-2}\)đạt giá trị nguyên

\(\Rightarrow n+8⋮n-2\)

\(\Leftrightarrow\left(n-2\right)+10⋮n-2\)

Do \(n-2⋮n-2\)

\(\Rightarrow10⋮n-2\)

\(\Rightarrow n-2\inƯ\left(10\right)\)

\(\Rightarrow n-2\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

Ta có bảng sau :

   n - 2   1   -1   2   -2   5   -5   10   -10
   n   3   1   4   0   7   -3   12   -8

Vậy để \(\frac{n+8}{n-2}\)là số nguyên

\(\Rightarrow n\in\left\{3;1;4;0;7;-3;12;-8\right\}\)

a) Để A được xác định thì \(n\ne-1\)

b) Ta có:

\(A=\frac{\left(2n+2\right)+1}{n+1}\)

\(A=\frac{2\left(n+1\right)+1}{n+1}\)

\(A=\frac{2\left(n+1\right)}{n+1}+\frac{1}{n+1}\)

\(A=2+\frac{1}{n+1}\)

Để A có giá trị nguyên thì \(\left(n+1\right)\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{-1;1\right\}\)

Nên \(\left(n+1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-2;0\right\}\)

Vậy để A có giá trị nguyên thì \(n=-2\)hoặc \(n=0\)

5 tháng 1 2017

a)A xđ <=> \(n+1\ne0\Leftrightarrow n\ne-1\)

b) A thuộc Z <=> \(\frac{2n+3}{n+1}\in Z\)<=> \(\left(2n+3\right)⋮\left(n+1\right)\)

Giải tiếp nha bạn :>

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)