\(y=x^3-mx^2+\left(m-\dfrac{2}{3}\right)x+5\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GV
21 tháng 4 2017

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)\)

Để hàm số có cực trị tại x = 1 thì x =1 phải là nghiệm của y'=0.

=> \(3.1^2-2m.1+\left(m-\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow m=\dfrac{7}{3}\)

Khi đó ta có:

\(y=x^3-\dfrac{7}{3}x^2+\dfrac{5}{3}x+5\)

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)=\dfrac{1}{3}\left(9x^2-14x+5\right)\)

\(y'\) có 2 nghiệm là \(1\)\(\dfrac{5}{9}\).

\(y'\) đổi dấu từ âm sang dương khi đi qua x = 1 nên tại x = 1 thì hàm số đạt cực tiểu.

Giá trị cực tiểu tại x = 1 là:

\(y\left(1\right)=1^3-\dfrac{7}{3}.1^2+\dfrac{5}{3}.1+5=\dfrac{16}{3}\)

8 tháng 1 2019

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT  = y(1) = (16/3).

7 tháng 7 2018

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T  = y(1) = (16/3).

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

Tập xác định :

Nếu hàm số đạt cực đại tại x = 2 thì y'(2) = 0 ⇔ m2 + 4m + 3 = 0 ⇔ m=-1 hoặc m=-3

- Với m = -1, ta có :

x=0 hoặc x=2.

Ta có bảng biến thiên :

Trường hợp này ta thấy hàm số không đạt cực đại tại x = 2.

- Với m = -3, ta có:

x=2 hoặc x=4

Ta có bản biến thiên :

Trường hợp này ta thấy hàm số đạt cực đại tại x = 2.

Vậy m = -3 là giá trị cần tìm.

24 tháng 3 2016

- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị

- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\) 

hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)

24 tháng 3 2016

Ta có \(y'=3x^2-6\left(m+1\right)x+9\)

Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là  \(x_1,x_2\)

\(\Leftrightarrow\) \(x^2-2\left(m+1\right)x+3=0\) có hai nghiệm phân biêt  \(x_1,x_2\)
 
\(\Leftrightarrow\Delta'=\left(m+1\right)^2-3\Leftrightarrow\begin{cases}m>-1+\sqrt{3}\\m<-1-\sqrt{3}\end{cases}\) (1)
Theo định lí Viet ta có  \(x_1+x_2=2\left(m+1\right)\)
 \(x_1,x_2=3\)
Khi đó 
\(\left|x_1-x_2\right|\le2\)  \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le4\)
                        \(\Leftrightarrow4\left(m+1\right)^2-12\le4\)
                        \(\Leftrightarrow\left(m+1\right)^2\le4\)
                        \(\Leftrightarrow-3\le m\)\(\le1\) (2)
Từ (1) và (2) suy ra giá trị của m là \(-3\le m<-1-\sqrt{3}\) và\(-1+\sqrt{3}\)<m\(\le1\)
 
 
GV
21 tháng 4 2017

\(y'=3x^2-4x+m\)

Để hàm số đạt cực tiểu tai x = 1 thì x = 1 là nghiệm của y' và y' đổi dấu khi đi qua x = 1.

Để x = 1 là nghiệm của y' thì:

\(3.1^2-4.1+m=0\) \(\Rightarrow m=1\)

Với m = 1. khi đó: \(y'=3x^2-4x+1\) có 2 nghiệm là \(1\)\(\dfrac{1}{3}\); \(y'\) đổi dấu từ âm sang dương khi đi qua x = 1. Vậy hàm số có cực tiểu tại x = 1.

24 tháng 3 2016

\(\Leftrightarrow y'=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1\)<\(x_2\)<1

\(\Leftrightarrow\)\(\begin{cases}\Delta'=4m^2-m-5>0\\f\left(1\right)=-5m+7>0\\\frac{S}{2}=\frac{2m-1}{3}<1\end{cases}\)\(\Leftrightarrow\)\(\frac{5}{4}\)<m<\(\frac{7}{5}\)