Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-4\left(x^2-2x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)-\left(2x^2-4x+2\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x^2+4x-2\right)\left(x+1+2x^2-4x+2\right)=0\)
\(\Leftrightarrow\left(-2x^2+5x-1\right)\left(2x^2-3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2+5x-1=0\\2x^2-3x+3=0\left(loai\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{17}}{4}\end{matrix}\right.\)
\(1.2x^2-2y^2-6x-6y=2\left(x^2-y^2\right)-6\left(x+y\right)\)
\(=2\left(x+y\right)\left(x-y\right)-6\left(x+y\right)=\left(x+y\right)[2\left(x-y\right)-6]=\left(x+y\right)\left(2x-2y-6\right)\)
\(2.x^4+x^3-x^2-x=\left(x^4+x^3\right)-\left(x^2+x\right)\)
\(=x^3\left(x+1\right)-x\left(x+1\right)=\left(x+1\right)\left(x^3-x\right)\)
\(3.a^3+a^2b-a^2c-abc\)( mình trả lời ở câu hỏi của bạn rồi)
\(4.x^5-x^3+x^2-1=\left(x^5-x^3\right)+\left(x^2-1\right)\)
\(=x^3\left(x^2-1\right)+\left(x^2-1\right)=\left(x^2-1\right)\left(x^3+1\right)\)
\(5.x+y\left(x-1\right)-1\) ( mình trả lời ở câu hỏi của bạn rồi)
câu 6 và 7 cũng vậy
\(x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay ............... :
\(\left(\left(-4\right)-y-2.45\right)\left(\left(-4\right)-y+2.45\right)\)
\(=\left(-y-49\right)\left(86-y\right)\)
1/\(x^2+5x+6=0\)
=>\(x^2+2x+3x+6=0\)
=>\(x\left(x+2\right)+3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)
Đặt \(A=x^8+x^6+x^4+x^2+1\)
\(A=x^4\left(x^4+x^2+1+\frac{1}{x^2}+\frac{1}{x^4}\right)\)
\(A=x^4\left[\left(x^4+\frac{1}{x^4}\right)+\left(x^2+\frac{1}{x^2}\right)\right]\)
Đặt \(x^2+\frac{1}{x^2}=a\)thì \(\left(x^2+\frac{1}{x^2}\right)=a^2\Rightarrow x^4+2+\frac{1}{x^4}=a^2\Rightarrow x^4+\frac{1}{x^4}=a^2-2\), lúc đó:
\(A=x^4\left[\left(a^2-2\right)+a\right]\)
\(A=x^4\left(a^2-2+a\right)\)
\(A=x^4\left(a^2+2a-a-2\right)\)
\(A=x^4\left[\left(a^2+2a\right)-\left(a+2\right)\right]\)
\(A=x^4\left[a\left(a+2\right)-\left(a+2\right)\right]\)
\(A=x^4\left(a-1\right)\left(a+2\right)\)
\(A=x^4\left(x^2+\frac{1}{x^2}-1\right)\left(x^2+\frac{1}{x^2}+2\right)\)
\(A=\left[x^2\left(x^2+\frac{1}{x^2}-1\right)\right]\left[x^2\left(x^2+\frac{1}{x^2}+2\right)\right]\)
\(A=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(A=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
=1 nha bn