![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta giả sử:
\(\hept{\begin{cases}AB:y=-\frac{x}{2}+\frac{13}{2}\\BC:y=-2x+13\\CA:y=\frac{x}{2}+3\end{cases}}\)
Ta thấy hệ số góc của BC và CA có tích bằng -1 nên BC vuông góc CA, hay tam giác ABC vuông tại C.
Như vậy đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính AB.
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\2x+y-13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=\frac{13}{3}\end{cases}}\) ta được \(B\left(\frac{13}{3};\frac{13}{3}\right)\)
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\x-2y+6=0\end{cases}}\) ta được tọa độ A.
Dùng công thức tính khoảng cách AB, ta tìm đc đường kính, sau ra suy ra bán kính em nhé :))
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự \(\frac{y^3}{z}+yz\ge2y^2;\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)-\left(xy+yz+zx\right)\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
x=0:62768736468686
x=0
Đề bài không cho x=0
=>x không thỏa măn đề bài
Vậy không có x nào thỏa mãn đề bài