Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm ra 3 đỉnh tam giác và độ dài 3 cạnh tam giác sau đó dùng pytago đảo
Gỉa sử cạnh AB , BC , AC lần lượt có phương trình (1),(2),(3) ta có:
\(a_{AB}=\frac{-1}{2}\)
\(a_{BC}=-2\)
\(a_{AC}=\frac{1}{2}\)
Lại có: \(a_{AC}.a_{BC}=-1\)
\(\Rightarrow\Delta ABC\)vuông tại\(C\)
Cạnh AB là đường kính của đường tròn ngoại tiếp
Xác định tọa độ của A và B , ta có:
\(A\left(-2;2\right)\) \(B\left(8;-3\right)\)
Do đó: \(AB=\sqrt{\left(8+2\right)^2+\left(-3-2\right)^2}\)
\(\Rightarrow AB=\sqrt{125}\approx11,2\)
Vậy: \(R=\frac{AB}{2}=\frac{11,2}{2}\approx5,6\)
3. pt có 2 nghiệm x1, x2, theo vi-ét: x1+x2=-m và x1x2=1/m
x1_^3+x2_^3=0
=>(x1+x2)(x1_^2+x2_^2-x1x2)=0
=>(x1+x2)((x1_^2+x2_^2)^2-3x1x2)=0
=>-m(m^2-3/m)=0
=>-m^3+3
=>m=-căn bậc 3 của 3
\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)
\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)
\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)
A B C I
trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền
Áp dụng định lý pytago vào tgiac vuông ABC ta có :
\(BC^2\)=\(AC^2\)+\(AB^2\)
\(BC^2\)=\(8^2\)+\(6^2\)
\(BC^2\)=100
BC=10
Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:
10:2=5cm
Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)
ra có R=BC/2=5
mà S=pr=(6+8+10)/2r=6*8/2=>r=2
cậu tham khảo link này nè http://www.toanhocnhatrang.com/2016/04/hinh-hoc-phang-ltptth-2016-lqd-bai-61.html
Gọi cạnh huyền là a, cạnh đối diện góc 300 là c, cạnh còn lại là b
Tính được \(b=c.\cot30=c\sqrt{3}\) nên \(a=\sqrt{b^2+c^2}=\sqrt{\left(c\sqrt{3}\right)^2+c^2}=2c\)
Bán kính đường tròn ngoại tiếp là R = a/2 = 2c/2 = c
Bán kính đường tròn nội tiếp là
\(r=\frac{S}{p}=\frac{bc}{2p}=\frac{bc}{a+b+c}=\frac{c^2\sqrt{3}}{2c+c\sqrt{3}+c}=\frac{c^2\sqrt{3}}{\left(3+\sqrt{3}\right)c}=\frac{\left(\sqrt{3}-1\right)c}{2}\)
Do đó \(\frac{R}{r}=c.\frac{2}{\left(\sqrt{3}-1\right)c}=1+\sqrt{3}\)
bạn thi vio à kết bạn vs mk nhé
Ta giả sử:
\(\hept{\begin{cases}AB:y=-\frac{x}{2}+\frac{13}{2}\\BC:y=-2x+13\\CA:y=\frac{x}{2}+3\end{cases}}\)
Ta thấy hệ số góc của BC và CA có tích bằng -1 nên BC vuông góc CA, hay tam giác ABC vuông tại C.
Như vậy đường tròn ngoại tiếp tam giác ABC là đường tròn đường kính AB.
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\2x+y-13=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=\frac{13}{3}\end{cases}}\) ta được \(B\left(\frac{13}{3};\frac{13}{3}\right)\)
Giải hệ \(\hept{\begin{cases}x+2y-13=0\\x-2y+6=0\end{cases}}\) ta được tọa độ A.
Dùng công thức tính khoảng cách AB, ta tìm đc đường kính, sau ra suy ra bán kính em nhé :))
dạ vâng, em cám ơn cô nhiều ạ