K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2024

  \(x=3y\) và y = 5\(x\)  thay y = 5\(x\) vào \(x\) = 3y ta có: \(x\) = 3.5\(x\) 

    ⇒ \(x\)   = 15\(x\) ⇒ \(x-15x\) = 0 ⇒ \(-14\)\(x\) = 0 ⇒ \(x=0\)

Thay \(x\) = 0 vào y = 5\(x\) ta được:  y= 5.0 = 0

Vậy \(x=3\)y; y = 5\(x\) thì y = 0 

 

10 tháng 5 2019

25 tháng 9 2018

24 tháng 1 2017

Chọn B

Ta có: BYTtRU8RnIpd.png. Gọi Omdq7D8JOmff.png suy ra s2hyFum8LMY2.png, ta có lvxCdMFoPtFt.png1IyLDr0K4NCf.png. Vậy có 4S5a3XrHT4bM.png điểm có tọa độ nguyên.

9 tháng 11 2017

Đáp án B

 

15 tháng 2 2017

Đáp án B

Từ giả thiết

Xét hàm số

Do đó  (*)

Xét hàm g(m) trên đoạn

Lúc này

NV
12 tháng 6 2019

\(log_{\frac{1}{2}}x+log_{\frac{1}{2}}y\le log_{\frac{1}{2}}\left(x+y^2\right)\Leftrightarrow log_{\frac{1}{2}}\left(xy\right)\le log_{\frac{1}{2}}\left(x+y^2\right)\Leftrightarrow xy\ge x+y^2\)

\(\Leftrightarrow x\left(y-1\right)\ge y^2\Leftrightarrow\left\{{}\begin{matrix}y>1\\x\ge\frac{y^2}{y-1}\end{matrix}\right.\)

\(\Rightarrow P=x+3y\ge\frac{y^2}{y-1}+3y=4y+1+\frac{1}{y-1}=4\left(y-1\right)+\frac{1}{y-1}+5\)

\(\Rightarrow P\ge2\sqrt{4\left(y-1\right).\frac{1}{\left(y-1\right)}}+5=9\)

\(\Rightarrow P_{min}=9\) khi \(\left\{{}\begin{matrix}x=\frac{9}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

NV
18 tháng 6 2021

Xét hàm \(f\left(x\right)=x^5-5x^3-20x+m\)

\(f'\left(x\right)=5x^4-15x^2-20=0\) có 2 nghiệm

\(\Rightarrow f\left(x\right)\) có 2 cực trị

\(\Rightarrow y=\left|f\left(x\right)\right|\) có 5 cực trị khi \(x^5-5x^3-20x+m=0\) có 3 nghiệm bội lẻ

Từ BBT ta thấy \(y=-m\) cắt \(y=x^5-5x^3-20x\) tại 3 điểm pb khi và chỉ khi:

\(-48\le-m\le48\Rightarrow-48\le m\le48\)

\(\Rightarrow\) Có 97 giá trị nguyên của m

8 tháng 5 2018

Đáp án C

EP5sczD1TuYZ.png

Đồ thị có hai tiệm cận đứng là x = 2 x = -2 và có một tiệm cận ngang là y = 0