Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có: . Gọi suy ra , ta có . Vậy có điểm có tọa độ nguyên.
Đáp án B
Từ giả thiết
Xét hàm số
Do đó (*)
Xét hàm g(m) trên đoạn
Lúc này
\(log_{\frac{1}{2}}x+log_{\frac{1}{2}}y\le log_{\frac{1}{2}}\left(x+y^2\right)\Leftrightarrow log_{\frac{1}{2}}\left(xy\right)\le log_{\frac{1}{2}}\left(x+y^2\right)\Leftrightarrow xy\ge x+y^2\)
\(\Leftrightarrow x\left(y-1\right)\ge y^2\Leftrightarrow\left\{{}\begin{matrix}y>1\\x\ge\frac{y^2}{y-1}\end{matrix}\right.\)
\(\Rightarrow P=x+3y\ge\frac{y^2}{y-1}+3y=4y+1+\frac{1}{y-1}=4\left(y-1\right)+\frac{1}{y-1}+5\)
\(\Rightarrow P\ge2\sqrt{4\left(y-1\right).\frac{1}{\left(y-1\right)}}+5=9\)
\(\Rightarrow P_{min}=9\) khi \(\left\{{}\begin{matrix}x=\frac{9}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Xét hàm \(f\left(x\right)=x^5-5x^3-20x+m\)
\(f'\left(x\right)=5x^4-15x^2-20=0\) có 2 nghiệm
\(\Rightarrow f\left(x\right)\) có 2 cực trị
\(\Rightarrow y=\left|f\left(x\right)\right|\) có 5 cực trị khi \(x^5-5x^3-20x+m=0\) có 3 nghiệm bội lẻ
Từ BBT ta thấy \(y=-m\) cắt \(y=x^5-5x^3-20x\) tại 3 điểm pb khi và chỉ khi:
\(-48\le-m\le48\Rightarrow-48\le m\le48\)
\(\Rightarrow\) Có 97 giá trị nguyên của m
Đáp án C
Đồ thị có hai tiệm cận đứng là x = 2 và x = -2 và có một tiệm cận ngang là y = 0
\(x=3y\) và y = 5\(x\) thay y = 5\(x\) vào \(x\) = 3y ta có: \(x\) = 3.5\(x\)
⇒ \(x\) = 15\(x\) ⇒ \(x-15x\) = 0 ⇒ \(-14\)\(x\) = 0 ⇒ \(x=0\)
Thay \(x\) = 0 vào y = 5\(x\) ta được: y= 5.0 = 0
Vậy \(x=3\)y; y = 5\(x\) thì y = 0