K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Đề lỗi Latex rùi

\(\dfrac{\left(-x^3y^6z^9\right)^{10}}{\left(xyz\right)^{15}}\)

\(=\dfrac{-x^{30}\cdot y^{60}\cdot z^{90}}{x^{15}y^{15}z^{15}}=-x^{15}y^{45}z^{75}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$(x-z)^2+(y-z)^2+y^2+z^2=2xy-2yz+6z-9$

$\Leftrightarrow x^2-2xz+z^2+(y-z)^2+y^2+z^2-2xy+2yz-6z+9=0$

$\Leftrightarrow x^2-2x(z+y)+(z^2+y^2+2yz)+(y-z)^2+(z^2-6z+9)=0$

$\Leftrightarrow x^2-2x(y+z)+(y+z)^2+(y-z)^2+(z-3)^2=0$

$\Leftrightarrow (x-y-z)^2+(y-z)^2+(z-3)^2=0$
Vì $(x-y-z)^2\geq 0; (y-z)^2\geq 0; (z-3)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:

$(x-y-z)^2=(y-z)^2=(z-3)^2=0$

$\Rightarrow z=3; y=3; x=6$

b)

$x^2+3y^2+z^2+2xy-2yz-2x+4y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)+(y^2-2yz+z^2)+y^2-2x+4y+10=0$

$\Leftrightarrow (x+y)^2+(y-z)^2+y^2-2(x+y)+6y+10=0$

$\Leftrightarrow (x+y)^2-2(x+y)+1+(y-z)^2+(y^2+6y+9)=0$

$\Leftrightarrow (x+y-1)^2+(y-z)^2+(y+3)^2=0$ (lập luận tương tự phần a)

$\Leftrightarrow y=z=-3; x=4$

c: (x-y+4)^2

=x^2+y^2+16+2*x*(-y)-2*y*4+2*x*4

=x^2+y^2+16-2xy-8y+8x

h; x^3y^6z^9-125

\(=\left(xy^2z^3\right)^3-5^3\)

\(=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z^3+25\right)\)

31 tháng 10 2021

a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)

b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)

1 tháng 11 2021

Bn cs lm đc câu c, d lun k

26 tháng 8 2020

giúp mình với mọi người ơi

26 tháng 8 2020

a, A=xy+7x-3y-21                                                         b,B= xyz+xz-yz-z+xy+x-y-1

    A=(xy+7x)-(3y+21)                                                      B=(xyz+xz)-(yz+z)+(xy+x)-(y+1)

    A=x(y+7)-3(y+7)                                                          B=xz(y+1)-z(y+1)+x(y+1)-(y+1)

    A=(y+7)(x-3)                                                                B=(y+1)(xz-z+x-1)

Thay x=103, y=-17 vào biểu thức ta có:                         B=(y+1)[(xz-z)+(x-1)]

A=(-17+7)(103-3)                                                            B=(y+1)[z(x-1)+(x-1)]

A=(-10)(100)                                                                   B=(y+1)(x-1)(z+1)

A=-1000                                                                          Thay x=-9, y=-21, z=-31 vào biểu thức ta có:

                                                                                           B=(-21+1)(-9-1)(-31+1)

                                                                                           B=(-20)(-10)(-30)

                                                                                           B=200(-30)

                                                                                           B=-6000

                                                    

20 tháng 1 2020

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

26 tháng 2 2020

Bài  3: Khai triển: 

\(\text{a) (x + 5)2 =2x+10}\)

\(\text{b) (x – 3y)2 =2x-6y}\)

\(\text{c) (x2 – 6z)(x2 + 6z)=}4x^2-36z^2\)

26 tháng 2 2020

Mấy cái số 2 là bình phương hả bạn