Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(2+xy\right)^2=x^2y^2+4xy+4\)
b. \(\left(5-x^2\right)\left(5+x^2\right)=25+5x^2-5x^2-x^4=-x^4+25\)
c. \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)=8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3\)
\(=8x^3-y^3\)
d. \(\left(5-3x\right)^2=25-30x+9x^2\)
e. \(\left(5x-1\right)^3=125x^3-75x^3+15x-1\)
f. \(\left(x+3\right)\left(x^2-3x+9\right)=x^3-3x^2+9x+3x^2-9x+27=x^3+27\)
h. \(\left(2x^2+3y\right)^2=4x^4+12x^2y+9y^2\)
a) (2+xy)2 = 22+4xy+(xy)2 = 4 + 4xy +x2y2
b) ( 5 - x^2 ) . ( 5 + x^2 ) = 52-x4=25-x4
c) ( 2x - y ) . ( 4x^2 + 2xy + y^2 ) = 8x3-y3
d)(5-3x)2=52-2.5.3x+9x2=25-30x+9x2
e) (5x-1)3=(5x)3-3.(5x)2.1+3.5x.1-1 =125x3-75x2+15x-1
f) (x+3)(x2-3x+9)=(x+3)(x2-3x+32)=x3+27
g) -x3+3x2-3x+1 =(−x+1)(x−1)(x−1)= -(x-1)3
h) (2x2+3y)2=4x4+2.2x2.3y+9y2=4x4+12x2y+9y2
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
a) 1/2(x3+8)=1/2(x+2)(x2-2x+4)
b) x4(x-y)+2x3(x-y)=x3(x+2)(x-y)
c) x2-(y2-6y+9)=x2-(y-3)2=(x-y+3)(x+y-3)
d) xy(x3+y3)=xy(x+y)(x2-xy+y2)
e)3x2(x2-25y2)=3x2(x-5y)(x+5y)
f) 4x4+4x2y2+y4-4x2y2= (2x2+y2)2-(2xy)2=(2x2-2xy+y2)(2x2+2xy+y2)
a) \(\frac{1}{2}x^3+4=\frac{1}{2}\left(x^3+8\right)=\frac{1}{2}\left(x+2\right)\left(x^2-2x+4\right)\)
b) \(x^5-x^4y+2x^4-2x^3y=x^3\left(x^2-xy+2x-2y\right)=x^3\left[x\left(x-y\right)+2\left(x-y\right)\right]=x^2\left(x-y\right)\left(x+2\right)\)
c) \(x^2-y^2+6y-9=x^2-\left(y-3\right)^2=\left(x+y-3\right)\left(x-y+3\right)\)
d) \(x^4y+xy^4=xy\left(x^3+y^3\right)=xy\left(x+y\right)\left(x^2-xy+y^2\right)\)
e) \(3x^4-75x^2y^2=3x^2\left(x^2-25y^2\right)=3x^2\left(x+5y\right)\left(x-5y\right)\).
f) \(4x^4+y^4=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2+2xy\right)\left(2x^2-y^2-2xy\right)\)
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
Bài 3: Khai triển:
\(\text{a) (x + 5)2 =2x+10}\)
\(\text{b) (x – 3y)2 =2x-6y}\)
\(\text{c) (x2 – 6z)(x2 + 6z)=}4x^2-36z^2\)
Mấy cái số 2 là bình phương hả bạn