Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
mà A\(\le0\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\) phải bằng 0 đê thỏa mãn điều kiện
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy....
b;c)I hệt câu a nên làm tương tự nhá
d)
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)
B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)
Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)
Vậy....
x:y:z=5:7:8 =>x/5=y/7=z/8 =(x + y- z)/ (5+7-8) =2,4/4= 0,6
=> x= 0,6 x 5= 3;
y= 0,6 x 7 =4,2
z= 0,6 x 8= 4,8
ta co : \(\frac{x}{2}=\frac{y}{3}:\frac{y}{5}=\frac{z}{4}\)
=> \(\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) va : x - y + z = -49
AD tinh chat day ti so = nhau ta co :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
\(\frac{x}{10}=-7=>x=-7.10=-70\)
\(\frac{y}{15}=-7=>y=15.-7=-105\)
\(\frac{z}{12}=-7=>z=12.-7=-84\)
vay : x = -70 : y = -105 ; z = -84
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\) (1)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
\(\frac{x}{10}=-7\Rightarrow x=-7\times10=-70\)
\(\frac{y}{15}=-7\Rightarrow y=-7\times15=-105\)
\(\frac{z}{12}=-7\Rightarrow z=-7\times12=-84\)
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a) �2=�5=�7;�+�+�=562x=5y=7z;x+y+z=56
�2=�5=�7=�+�+�2+5+7=5614=42x=5y=7z=2+5+7x+y+z=1456=4
⇒{�=4.2=8�=4.5=20�=4.7=28⇒⎩⎨⎧x=4.2=8y=4.5=20z=4.7=28
b) �1,1=�1,3=�1,4(1);2�−�=5,51,1x=1,3y=1,4z(1);2x−y=5,5
(1)⇒2�−�1,1.2−1,3=5,50,9(1)⇒1,1.2−1,32x−y=0,95,5
⇒⎩⎨⎧x=1,1.0,95,5=0,96,05y=1,3.0,95,5=0,97,15z=1,11,4.x=1,11,4.0,96,05=0,998,47
d) �2=�3=�5;���=−302x=3x=5z;xyz=−30
�2=�3=�5=���2.3.5=−3030=−12x=3x=5z=2.3.5xyz=30−30=−1
⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5⇒⎩⎨⎧x=2.(−1)=−2y=3.(−1)=−3z=5.(−1)=−5
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{6}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Và x + y + z = 46
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{46}{31}\)
Ta có:
\(\frac{x}{15}=\frac{46}{31}\Rightarrow x=\frac{46}{31}.15=\frac{690}{31}\)
\(\frac{y}{10}=\frac{46}{31}\Rightarrow y=\frac{46}{31}.10=\frac{460}{31}\)
\(\frac{z}{6}=\frac{46}{31}\Rightarrow z=\frac{46}{31}.6=\frac{276}{31}\)
Vậy \(x=\frac{690}{31};y=\frac{460}{31};z=\frac{276}{31}\)