Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^3-9x^2+27x-27)+(x^2-6x+9)=0
(x-3)^3+(x-3)^2=0
(x-3)^2(x-2)=0
<=>x-3=0 hoặc x-2=0
<=>x=3 hoặc x=2
\(3x^4+2x^3-8x^2-2x+5\)
\(=3x^4-3x^3+5x^3-5x^2-3x^2+3x-5x+5\)
\(=3x^3\left(x-1\right)+5x^2\left(x-1\right)-3x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(3x^3+5x^2-3x-5\right)\left(x-1\right)\)
\(=\left[3x\left(x^2-1\right)+5\left(x^2-1\right)\right]\left(x-1\right)\)
\(=\left(3x+5\right)\left(x^2-1\right)\left(x-1\right)\)
\(=\left(3x+5\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(3x+5\right)\left(x+1\right)\left(x-1\right)^2\)
b, \(2x^4-9x^3+4x^2+21x-18\)
\(=2x^4-2x^3-7x^3+7x^2-3x^2+3x+18x-18\)
\(=2x^3\left(x-1\right)-7x^2\left(x-1\right)-3x\left(x-1\right)+18\left(x-1\right)\)
\(=\left(2x^3-7x^2-3x+18\right)\left(x-1\right)\)
a)
\(\left(x^3-7x^2+14.x\right)-\left(x^2-7x+14\right)\)
\(x\left(x^2-7x+14\right)-\left(x^2-7x+14\right)=\left(x^2-7x+14\right)\left(x-1\right)\)\(\left[\left(x-\dfrac{7}{2}\right)^2+\dfrac{7}{4}\right]\left(x-1\right)=0\)
\(\left[{}\begin{matrix}\left(x-\dfrac{7}{2}\right)^2+\dfrac{7}{4}>0vnghiem\\x-1=0=>x=1\end{matrix}\right.\) Kết luận x=1
a,x3 - 8x2 + 21x -14 = 0
\(\Leftrightarrow\)x3-x2-7x2+7x+14x-14=0
\(\Leftrightarrow\left(x^3-x^2\right)-\left(7x^2-7x\right)+\left(14x-14\right)=\)0
\(\Leftrightarrow x^2\left(x-1\right)-7x\left(x-1\right)+14\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-7x+14\right)\)=0
\(\Leftrightarrow\)x-1=0\(\Leftrightarrow\)x=1
vì x2-7x+14=(x2-2.\(\dfrac{7}{2}\)x+\(\dfrac{49}{4}\))+\(\dfrac{7}{4}\)=(x-\(\dfrac{7}{2}\))2+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\forall x\)
vậy pt có một nghiệm duy nhất là x=1
a ) \(2x^4-9x^3+4x^2+21x-18\)
\(=2x^4-2x^3-7x^3+7x^2-3x^2+3x+18x-18\)
\(=2x^3\left(x-1\right)-7x^2\left(x-1\right)-3x\left(x-1\right)+18\left(x-1\right)\)
\(=\left(2x^3-7x^2-3x+18\right)\left(x-1\right)\)
A = x^100 - 21x^99 - 21x^98 - 21x^97 -...-21x^2 - 21x +2010
A=x^100 - 22x^99 + x^99 -22x^98 + x^98 - ... - 22x +x +2010
A=x^99 (x-22) + x^98 (x-22) + x^97(x-22) + ... + x(x-22) + x +2010
A=(x-22) (x^99 + x^98 + x^97 + ... + x) + x + 2010
Thay x = 22 vào A, tao có:
A= (22-22) (22^99 + 22^98 + ... +22) + 22 + 2010
A = 0 (22^99 + 22^98 + ... +22) + 2032
A= 0 + 2032
A = 2032
x=22
=>x-1=21
thay 21=x-1 vào A ta được:
A=x100-(x-1)x99-(x-1)x98-(x-1)x97-...-(x-1)x2-(x-1)x+2010
=x100-x100+x99-x99+x98-x98+x97-...-x3+x2-x2+x+2012
=>A=x+2012
thay x=22 vào A=x+2012 ta được:
A=22+2012=2034
a) Ta có: \(\left(-5x^4-12x^3-13x^2\right):\left(-2x^2\right)\)
\(=\frac{-x^2\left(5x^2+12x+13\right)}{-2x^2}\)
\(=\frac{5x^2+12x+13}{2}\)
b) Ta có: \(\left(-8x^5+x^3-2x^2\right):2x^2\)
\(=\frac{-x^2\left(8x^3-x+2\right)}{2x^2}\)
\(=\frac{-8x^3+x-2}{2}\)
c) Ta có: \(\left(14x^6-21x^4-35x^2\right):\left(-7x^2\right)\)
\(=\frac{7x^2\left(2x^4-3x^2-5\right)}{-7x^2}\)
\(=-2x^4+3x^2+5\)
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)