K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x^3-9x^2+27x-27)+(x^2-6x+9)=0

(x-3)^3+(x-3)^2=0

(x-3)^2(x-2)=0

<=>x-3=0 hoặc x-2=0

<=>x=3 hoặc x=2

câu a) x=-3 nữa nha

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

28 tháng 1 2018

a) x3- 6x2+11x - 66 = 0

⇔x2( x - 6) + 11( x - 6) = 0

⇔( x - 6)( x2 + 11 ) = 0

Do : x2 + 11 > 0 ∀x

⇒ x - 6 = 0

⇒ x = 6

Vậy,...

b) x3- x2- 21x + 45=0

⇔ x3 - 3x2 + 2x2 - 6x - 15x + 45 = 0

⇔ x2( x - 3) + 2x( x - 3) - 15( x - 3) = 0

⇔ ( x - 3)( x2 + 2x - 15 ) = 0

⇔ ( x - 3)( x2 - 3x + 5x - 15 ) = 0

⇔ ( x - 3)[ x( x - 3) + 5( x - 3) ] = 0

⇔ ( x - 3)2( x + 5) = 0

⇔ x = 3 hoặc x = -5

Vậy,...

\(a,-x^3+x^2+4=0\)

\(-\left(x^3-x^2-4\right)=0\)

\(x^3-2x^2+x^2+2x-2x-4=0\)

\(x^2\left(x-2\right)+x\left(x+2\right)-2\left(x+2\right)=0\)

\(x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+x+2\right)=0\)

Vì \(x^2+x+2>0\left(\forall x\right)\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

23 tháng 6 2019

\(2x^2+2xy+y^2=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2=0\)

\(\Leftrightarrow\left(x+y\right)^2+x^2=0\)

\(\Leftrightarrow x=y=0\)

30 tháng 3 2020

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

21 tháng 7 2016

a, Nghiệm = -2

b,Ngiệm = -5 và 3

c,Nghiện = -1

21 tháng 7 2016

có cách giả không bạn

12 tháng 2 2016

b/ (12x + 7)2(3x + 2)(2x + 1) = 3

=> (144x2 + 168x + 49) (6x2 + 7x + 2) = 3 

- Nhân 2 vế cho 24 ta đc:

    (144x2 + 168x + 49) (144x2 + 168x + 48) = 72

- Đặt a = 144x2 + 168x + 48 , ta đc phương trình:

    (a + 1).a = 72

    => a2 + a - 72 = 0 

    => (a + 9)(a - 8) = 0

    => a = -9 hoặc a = 8

- Với a = -9 <=> 144x2 + 168x + 48 = -9 => 144x2 + 168x + 57 = 0 , mà 144x2 + 168x + 57 > 0 => pt vô nghiệm

- Với a = 8 <=> 144x2 + 168x + 48 = 8 => 144x2 + 168x + 40 = 0 => (3x + 1)(6x + 5) = 0 => x = -1/3 hoặc x = -5/6

Vậy x = -1/3 , x = -5/6

11 tháng 2 2016

muốn giải câu nào

1) Sửa đề: \(x^3-x^2+2=0\)

\(\Leftrightarrow x^3+x^2-2x^2-2x+2x+2=0\)

\(\Leftrightarrow x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+2\right)=0\)(1)

Ta có: \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra \(x+1=0\)

hay x=-1

Vậy: x=-1

2) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

3) Ta có: \(x^4+6x^2+8=0\)

\(\Leftrightarrow x^4+4x^2+2x^2+8=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)+2\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2+2\right)=0\)(3)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+4\ge4\ne0\forall x\)(4)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(5)

Từ (3), (4) và (5) suy ra phương trình \(x^4+6x^2+8=0\) vô nghiệm

Vậy: x∈∅

4) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3+5x^2-6x^2-30x+9x+45=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

Vậy: x∈{-5;3}