K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Ta có x2=yz(1) y2=xz(2) z2=xy(3)

Từ (1) => z=x2/y Từ (2)=> z=y2/x => y2/x=x2/y=>x=y

Từ (1) => y=x2/z Từ (3)=> y=z2/x => z2/x=x2/z=>x=z

Vậy x=y=z

22 tháng 3 2018

ta có X^2 = yz => x^3=yxz ; y^2 = xz => y^3=xyz ; z^2 = xy => z^3 = xyz

=> X^3 = y^3 = Z^3 => X=Y=Z

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

7 tháng 1 2017

x2=yz  => \(\frac{x}{y}=\frac{z}{x}\)

\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

áp dụng ... ta có

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

\(\frac{x}{y}=1\Rightarrow x=y\)

\(\frac{z}{x}=1\Rightarrow z=x\)

=>x=y=z

24 tháng 5 2020

Ta có x2=yz nên x/y=z/x(1)

y2=xz nên x/y=y/z(2)

z2=xy nên z/x=y/z(3)

Từ 1,2,3 suy ra x/y=z/x=y/z(4)

áp dụng t/c dãy tỉ số bằng nhau vào 4 có

x/y=z/x=y/z=x+y+z/x+y+z

vì x, y,z khác 0 nên x+y+z Khác 0

suy ra x+y+z/z+x+y=1

suy ra x/y=z/x=y/z=1

suy ra x=y; x=z; y=z

24 tháng 5 2020

C2 :

Từ x2=yzxz=yx(1)

Từ y2=xzyx=zy(2)

Từ z2=xyzy=xz(3)

Từ (1) , (2) và (3) xz=yx=zy

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

xz=yx=zy=x+y+zz+x+y=1

Khi đó : xz=1x=z((

yx=1y=x

zy=1z=y

T

22 tháng 2 2015

Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)

Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)

Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)

Từ (*) và (**) suy ra x = y = z

1 tháng 4 2018

thanks :)))

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)

25 tháng 9 2017

Bạn tham khảo ở đây nhé.

Câu hỏi của Trịnh Hương Quỳnh - Toán lớp 7 - Học toán với OnlineMath

13 tháng 3 2020

\(x^2=yz,y^2=xz,z^2=xy\Rightarrow x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2y\Leftrightarrow\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y,y=z,x=z\Leftrightarrow x=y=z\)

29 tháng 8 2016

Ta có : \(x^2+y^2+z^2=xy+xz+yz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Mà : \(\left(x-y\right)^2\ge0\) với mọi x , y

         \(\left(y-z\right)^2\ge0\) với mọi x , y

         \(\left(x-z\right)^2\ge0\) với mọi x , y

Nên : \(\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)

\(\Rightarrow x+y+z\left(đpcm\right)\)

29 tháng 8 2016

Chờ xíu .....

28 tháng 1 2016

 Ta có :x2 = yz , y2 = xz , z2 = xy

=> x2.y2.z2=yz.xz.xy

=>x2.y2.z2=y2.z2.x2

=>xyz=yxz

=> x=y=z

9 tháng 11 2016

vãi bạn xyz=yxz đã => x=y=z rồi