Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+6x^2+9x=0\)
\(x\left(x^2+6x+9\right)=0\)
\(x\left(x+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
1) \(x^3+5x^2+9x=-45\)
\(\Rightarrow x^2\left(x+5\right)+9x+45=0\)
\(\Rightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Rightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-9\left(loai\right)\\x=-5\left(nhan\right)\end{cases}}\)
2) \(x^3-6x^2-x+30=0\)
\(\Rightarrow x^3-3x^2-3x^2+9x-10x+30=0\)
\(\Rightarrow x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-3x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-5x+2x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[x\left(x-5\right)+2\left(x-5\right)\right]\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\)Từ đây giải x giống câu trên nhé.
3) \(x^2+16=10x\)
\(\Rightarrow x^2-10x+16=0\)
\(\Rightarrow\left(x-8\right)\left(x-2\right)=0\)
Tương tự....
x3 - 9x - 5x2 + 45 = 0
⇔ ( x3 - 5x2 ) - ( 9x - 45 ) = 0
⇔ x2( x - 5 ) - 9( x - 5 ) = 0
⇔ ( x - 5 )( x2 - 9 ) = 0
⇔ ( x - 5 )( x - 3 )( x + 3 ) = 0
⇔ x - 5 = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 5 hoặc x = ±3
\(x^3-9x-5x^2+45=0\)
\(x^3-5x^2-9x+45=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
a) \(45+x^3-5x^2-9x\)
\(\Leftrightarrow\left(45-9x\right)+\left(x^3-5x^2\right)\)
\(\Leftrightarrow-9\left(x-5\right)+x^2\left(x-5\right)\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)\left(x+3\right)\)
TK NKA !!!
Bài 1:
a: =>9x^2-6x+1=9x^2-2x
=>-4x=-1
=>x=1/4
b: \(\Leftrightarrow x^2+6x+9-x^2-2x-3=14\)
=>4x+6=14
=>4x=8
=>x=2
Bài 2:
a: \(=2x^2-6x+x-3-x^2+5x+3x=x^2+3x-3\)
b: =x^3-6x^2+12x-8-x^3+6x^2
=12x-8
1.tìm gtnn
A=x2+9x+56
B=x2-2x+15
C=9x2-12x
2.tìm gtln
D=-9x2+x
E=-x2+3x-5
F=-16x2-5x
Giúp mjk vs mn ơi:33
\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)
Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)
Vậy minA = 143/4 <=> x = - 9/2
\(B=x^2-2x+15=\left(x-1\right)^2+14\)
Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minB = 14 <=> x = 1
\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)
Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)
Vậy minC = - 4 <=> x = 2/3
Bài 1.
A = x2 + 9x + 56
= ( x2 + 9x + 81/4 ) + 143/4
= ( x + 9/2 )2 + 143/4
( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 143/4 <=> x = -9/2
B = x2 - 2x + 15
= ( x2 - 2x + 1 ) + 14
= ( x - 1 )2 + 14
( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 14 <=> x = 1
C = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4
9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> MinC = -4 <=> x = 2/3
Bài 2.
D = -9x2 + x
= -9( x2 - 1/9x + 1/324 ) + 1/36
= -9( x - 1/18 )2 + 1/36
-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36
Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18
=> MaxD = 1/36 <=> x = 1/18
E = -x2 + 3x - 5
= -( x2 - 3x + 9/4 ) - 11/4
= -( x - 3/2 )2 - 11/4
-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxE = -11/4 <=> x = 3/2
F = -16x2 - 5x
= -16( x2 + 5/16x + 25/1024 ) + 25/64
= -16( x + 5/32 )2 + 25/64
-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64
Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32
=> MaxF = 25/64 <=> x = -5/32
\(x^2\left(x+5\right)-9x=45\)
\(x^2\left(x+5\right)-9x-45=0\)
\(x^2\left(x+5\right)-9\left(x+5\right)=0\)
\(\left(x^2-9\right)\left(x+5\right)=0\)
\(\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\)
<=> x - 3 = 0 hoặc x + 3 = 0 hoặc x + 5 = 0
Vậy x = 3 hoặc x = -3 hoặc x = -5
Vậy nghiệm của phương trình là \(S=\left\{3;-3;-5\right\}\)