K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

3 tháng 2 2017

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3

13 tháng 1 2017

17 tháng 10 2021

\(x^3+9x^2+27x+19=0\)

\(\Leftrightarrow\left(x+3\right)^3=8\)

hay x=-1

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

3 tháng 7 2023

đề bài của bài này là tính thuii ạ

3 tháng 7 2023

a) \(x^3+3x^2+3x+1=x^2+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x-1\right)^3\)

b) \(x^2+6x+9=x^2+2\cdot3\cdot x+3^2=\left(x+3\right)^2\)

c) \(-x^3+9x^2-27x+27\)

\(=-\left(x^3-9x^2+27x-27\right)\)

\(=-\left(x^3-3\cdot3\cdot x^2+3\cdot3^2\cdot x-3^3\right)=-\left(x-3\right)^3\)

d) \(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)

k) \(10x-25-x^2=-x^2+10x-25=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2\cdot5\cdot x+5^2\right)=-\left(x-5\right)^2\)

f) \(\left(x+y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left[\left(x-y\right)-3x\right]\left[\left(x-y\right)+3x\right]\)

\(=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)

e: =>x(x^3-4x^2-8x+8)=0

=>x[(x^3+8)-4x(x+2)]=0

=>x(x+2)(x^2-2x+4-4x)=0

=>x(x+2)(x^2-6x+4)=0

=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)

g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0

=>(2x+5)(x^3-3x^2+3x-1)=0

=>(2x+5)(x-1)^3=0

=>x=1 hoặc x=-5/2

h: =>(x^2+8x+7)(x^2+8x+15)+15=0

=>(x^2+8x)^2+22(x^2+8x)+120=0

=>(x^2+8x+10)(x^2+8x+12)=0

=>(x^2+8x+10)(x+2)(x+6)=0

=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)

a: 49x^2-25=0

=>(7x-5)(7x+5)=0

=>7x-5=0 hoặc 7x+5=0

=>x=5/7 hoặc x=-5/7

b: Đề thiếu vế phải rồi bạn

c: (3x-2)^2-9(x+4)(x-4)=2

=>9x^2-12x+4-9(x^2-16)=2

=>9x^2-12x+4-9x^2+144=2

=>-12x+148=2

=>-12x=-146

=>x=146/12=73/6

d: x^3-6x^2+12x-8=0

=>(x-2)^3=0

=>x-2=0

=>x=2

e: x^3-9x^2+27x-27=0

=>(x-3)^3=0

=>x-3=0

=>x=3

3 tháng 9 2023

a) \(-25+49x^2=0\)

\(\Leftrightarrow49x^2-25=0\)

\(\Leftrightarrow\left(7x\right)^2-5^2=0\)

\(\Leftrightarrow\left(7x-5\right)\left(7x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-5=0\\7x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}7x=5\\7x=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-\dfrac{5}{7}\end{matrix}\right.\)

b) \(16x^2-25\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left[5\left(x-2\right)\right]^2=0\)

\(\Leftrightarrow\left(4x-5x+10\right)\left(4x+5x-10\right)=0\)

\(\Leftrightarrow\left(10-x\right)\left(9x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\9x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{10}{9}\end{matrix}\right.\)

c) \(\left(3x-2\right)^2-9\left(x+4\right)\left(x+4\right)=2\)

\(\Leftrightarrow9x^2-12x+4-9\left(x^2+8x+16\right)=2\)

\(\Leftrightarrow9x^2-12x+4-9x^2-72x-144=2\)

\(\Leftrightarrow-84x-140=2\)

\(\Leftrightarrow-84x=142\)

\(\Leftrightarrow x=-\dfrac{142}{84}\)

\(\Leftrightarrow x=-\dfrac{71}{42}\)

d) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-2^3=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

e) \(-27+27x-9x^2+x^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27=0\)

\(\Leftrightarrow\left(x-3\right)^3=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

10 tháng 3 2020

x3 - 9x2 + 19x - 11 = 0

<=> (x - 1)(x2 - 8x + 11) = 0

<=> x - 1 = 0

<=> x = 1

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}