K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

a) Ta có: \(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)hay x=1

Vậy: S={1}

c) Ta có: \(x+x^4=0\)

\(\Leftrightarrow x\left(x^3+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)

mà \(x^2-x+1>0\forall x\)

nên x(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: S={0;-1}

9 tháng 3 2021

Yêu cầu trả lời tất cả 6 câu

25 tháng 10 2019

\(2x^2-6x=0\)

\(\Rightarrow2x.\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}.\)

\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)

\(x^3-16x=0\)

\(\Rightarrow x.\left(x^2-16\right)=0\)

\(\Rightarrow x.\left(x^2-4^2\right)=0\)

\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy \(x\in\left\{0;4;-4\right\}.\)

Chúc bạn học tốt!

18 tháng 7 2023

a, (\(x-2\))2 - (2\(x\) + 3)2 = 0

     (\(x\) - 2 - 2\(x\) - 3)(\(x\) - 2 + 2\(x\) + 3) = 0

     (-\(x\) - 5)(3\(x\) +1) = 0

      \(\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\)

       \(\left[{}\begin{matrix}x=-5\\3x=-1\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\) { -5;- \(\dfrac{1}{3}\)}

b, 9.(2\(x\) + 1)2 - 4.(\(x\) + 1)2 = 0 

    {3.(2\(x\) + 1) - 2.(\(x\) +1)}{ 3.(2\(x\) +1) + 2.(\(x\) +1)} = 0

    (6\(x\) + 3 - 2\(x\) - 2)(6\(x\) + 3 + 2\(x\) + 2) = 0

      (4\(x\) + 1)(8\(x\) + 5) =0

        \(\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\)

          \(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{8}\end{matrix}\right.\)

          S = { - \(\dfrac{5}{8}\)\(\dfrac{-1}{4}\)}

 

           

    

      

18 tháng 7 2023

d, \(x^2\)(\(x\) + 1) - \(x\) (\(x+1\)) + \(x\)(\(x\) -1) = 0

      \(x\left(x+1\right)\).(\(x\) - 1) + \(x\)(\(x\) -1) = 0

        \(x\)(\(x\) -1)(\(x\) + 1 + 1) = 0

            \(x\left(x-1\right)\left(x+2\right)\) = 0

             \(\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\)

               \(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

              S = { -2; 0; 1}

     

\(x^2-25+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)+2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)

\(\left(x+5\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}}\)

\(x\left(x-1\right)+x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

P/s tham khảo nha

27 tháng 12 2019

12 tháng 7 2019

a)\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

b)2x ( x - 2 ) - (x - 2 ) = 0

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)

c)\(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

12 tháng 7 2019

\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(x^2+1>0\forall x\)

nên x=0

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

13 tháng 2 2023

a)

`x^2 +5x+6=0`

`<=> x^2 + 3x +2x+6=0`

`<=> x(x+3)+2(x+3)=0`

`<=> (x+3)(x+2)=0`

`<=> x+3=0 hoặcx+2=0`

`<=> x=-3 hoặc x=-2`

b)

`x^2 -7x+6=0`

`<=> x^2 -6x-x+6=0`

`<=> x(x-6)-(x-6)=0`

`<=> (x-6)(x-1)=0`

`<=> x-6=0 hoặc x-1=0 `

`<=> x=6 hoặc x=1`

c)

`x^2 +x -12=0`

`<=> x^2 +4x-3x-12=0`

`<=> x(x+4)-3(x+4)=0`

`<=> (x+4)(x-3)=0`

`<=> x+4=0 hoặc x-3=0`

`<=> x=-4 hoặc x=3`

d)

`x^2 -x-6=0`

`<=>x^2 -3x+2x-6=0`

`<=> x(x-3)+2(x-3)=0`

`<=> (x-3)(x+2)=0`

`<=> x-3=0 hoặc x+2=0`

`<=> x=3 hoặc x=-2`

e)

`2x^2 -3x-5=0`

`<=> 2x^2 -5x+2x-5=0`

`<=> x(2x-5)+(2x-5)=0`

`<=> (2x-5)(x+1)=0`

`<=> 2x-5=0 hoặc x+1=0`

`<=> x=5/2 hoặc x=-1`

13 tháng 2 2023

Chăm chỉ wa' ;-;