K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

delta = b2 - 4ac = (-(m+2))2 - 4*1*(2m-1) = (m+2)2 - 4( 2m-1 ) = m2 + 4m +4 - 8m + 4 = m2 - 4m + 8 = (m-2)2 + 4

Ta có : \(\hept{\begin{cases}\left(m-2\right)^2>=0\left(voimoim\right)\\4>0\left(lđ\right)\end{cases}}\)

=> ( m-2)2 +4 >0 ( với mọi m )

=> delta > 0 => pt luôn có 2 nghiệm phân biệt

6 tháng 4 2016

tính denlta ra thôi,,sau đô cm nó > 0 với mọi m

4 tháng 4 2023

\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)

\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)

⇒ Phương trình hai nghiệm phân biệt

Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)

Có : \(x_1^2+x_2^2=52\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)

\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)

\(\Leftrightarrow4m^2-24m+36-4m+16=52\)

\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)

Vậy...

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

a: Δ=(2m-2)^2-4*(-2m)

=4m^2-8m+4+8m=4m^2+4>0

=>Phương trình luôn có hai nghiệm phân biệt

b: x1+x2=2m-2; x1x2=-2m

c: x1^2+x2^2=4

=>(x1+x2)^2-2x1x2=4

=>(2m-2)^2-2*(-2m)=4

=>4m^2-8m+4+4m=4

=>4m^2-4m=0

=>m=0 hoặc m=1

loading...  do đó: phương trình luôn có 2 nghiệm phân biệt

4 tháng 4 2023

\(\Delta'=\left[-\left(m-3\right)\right]^2-\left(2m-8\right)=m^2-6m+9-2m+8=0\\ =m^2-8m+17\\ =\left(m^2-8m+16\right)+1\\ =\left(m-4\right)^2+1\\ \left(m-4\right)^2\ge0\forall x\\ =>\left(m-4\right)^2+1>1>0\forall x\)

=> phương trình có hai nghiệm phân biệt 

14 tháng 3 2022

\(\Delta=\left(2m\right)^2-4.1.\left[-\left(2m+3\right)\right]=4m^2+8m+12\)

\(=4.\left(m^2+2m+3\right)=4.\left(m+1\right)^2+8\ge8>0\)   ∀m

⇒ Phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m (ĐPCM)

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)